Biophysical effect of conversion from croplands to grasslands in water-limited temperate regions of China.

Sci Total Environ

Institute of Geo-Information and Earth Observation (IGEO), PMAS Arid Agriculture University, Rawalpindi, Pakistan.

Published: January 2019

The biophysical effect of land use and land cover change (LUCC) on regional climatic regulation is currently of growing interest. However, in water-limited temperate regions, the net biophysical effect of conversion from croplands to grasslands on regional climatic regulation remains poorly understood to date. To answer this concern, a modified land surface model (mEASS) and two different land use scenarios in a typical study area of the Loess Plateau of China were used in this study. We first validated the performances of mEASS model by using observations from six flux tower sites with different land cover and three metrics of the coefficient of determination (R), the root mean square error (RMSE) and the difference between the simulated and observed data (bias). Subsequently, the biophysical effect of conversion from croplands to grasslands was investigated. Results indicated that mEASS model could well capture the seasonal dynamics of net radiation and latent heat with high R and lower RMSE and bias at grassland, forest and cropland sites. In the context of semi-arid and semi-humid climatic conditions, conversion from croplands to grasslands caused the cooling effect (-0.3 W/m) at the annual scale. Similar cooling effects were found in spring (-0.4 W/m), autumn (-0.8 ± 0.1 W/m) and winter (-0.9 ± 0.1 W/m). The decreased latent heat (inducing warming effects) were completely offset by decreased net radiation (inducing cooling effects), which were responsible for the net cooling effects. However, a warming effect with 1.0 ± 0.1 W/m was observed in summer. This is because that magnitude of decreased latent heat is greater than that of decreased net radiation in summer. These findings will enrich our understanding for the biophysical effect of conversion from croplands to grasslands in water-limited temperate regions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2018.08.128DOI Listing

Publication Analysis

Top Keywords

conversion croplands
20
croplands grasslands
20
biophysical conversion
16
water-limited temperate
12
temperate regions
12
net radiation
12
latent heat
12
cooling effects
12
grasslands water-limited
8
land cover
8

Similar Publications

The complex topography of the mountain cities leads to uneven distribution of land resources. Currently, available studies mainly focuse on land use and landscape patterns (LU and LP) in plains or plateaus. Thus, it is necessary to carry out an analysis of the drivers of changes in LU and LP in mountain cities.

View Article and Find Full Text PDF

Small forest patches and landscape-scale fragmentation exacerbate forest fire prevalence in Amazonia.

J Environ Manage

January 2025

School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK; Instituto Juruá, Manaus, Brazil.

Over recent decades, forest fire prevalence has increased throughout the tropics, necessitating improved understanding of the landscape-scale drivers of fire occurrence. Here, we use MapBiomas land-cover and fire scar data to evaluate relationships between forest fragmentation, land-use, and forest fire prevalence in a typically consolidated Amazonian agricultural frontier: Portal da Amazonia, Mato Grosso, Brazil. Using zero-/zero-one-inflated Beta regressions, we investigate effects of forest patch (area, shape, surrounding forest cover) and landscape-scale variables (forest edge length, land-cover composition) on forest fire occurrence and density between 1985 and 2021.

View Article and Find Full Text PDF

Background: To align with climate goals, greenhouse gas (GHG) emissions from agriculture must be reduced significantly. Cultivated peatlands are an important source of such emissions. One proposed measure is to convert arable fields on peatlands to grassland, as the Intergovernmental Panel on Climate Change (IPCC) default emission factors (EF) for organic soils are lower from grasslands.

View Article and Find Full Text PDF

Climate change threatens smallholder agriculture and food security in the Global South. While cropland expansion is often used to counter adverse climate effects despite ecological trade-offs, the benefits for diets and nutrition remain unclear. This study quantitatively examines relationships between climate anomalies, forest loss from cropland expansion, and dietary outcomes in Nigeria, Africa's most populous country.

View Article and Find Full Text PDF

Driving force analysis and multi-scenario simulation of landscape ecological risk in the Jianghan Plain, China.

Sci Rep

January 2025

Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi, 445000, Hubei Province, China.

As a key food production base, land use changes in the Jianghan Plain (JHP) significantly affect the surface landscape structure and ecological risks, posing challenges to food security. Assessing the ecological risk of the JHP, identifying its drivers, and predicting the risk trends under different scenarios can provide strategic support for ecological risk management and safeguarding food security in the JHP. In this study, the landscape ecological risk (LER) index was constructed by integrating landscape indices from 2000 to 2020, firstly analyzing its spatiotemporal characteristics, subsequently identifying the key influencing factors by using the GeoDetector model, and finally, simulating the risk changes under the four scenarios by using the Markov-PLUS model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!