Both basic and clinical research support the use of tactile stimulation to rescue several neurobiobehavioral consequences that follow early life stress. Here, using a translational rodent model of the neonatal intensive care unit (NICU), we tested the individual prophylactic potential of a variety of sensory interventions including tactile (brushing pups with a paint brush to mimic maternal licking), auditory (a simulated lactating rat dam heart beat), and olfactory (a series of aroma therapy scents) stimulation. The NICU model was developed to mimic not only the reduced parental contact that sick infants receive (by isolating rat pups from their litters), but also the nosocomial infections and medical manipulations associated with this experience (by utilizing a dual lipopolysaccharide injection schedule). Each of the neurobiobehavioral consequences observed were dissociable between isolation and inflammation, or required a combined presentation ('two hits') of the neonatal stressors. Sprague-Dawley rats exposed to these early life stressors presented with sex-specific disruptions in both separation-induced ultrasonic vocalization (USV) distress calls (males & females) and juvenile social play USVs (males only). All three sensory enhancement interventions were associated with the rescue of potentiated distress calls while olfactory stimulation was protective of social vocalizations. Female rats exposed to early life stress experienced precocious puberty and shifts in the hypothalamic GnRh axis; sensory enrichment counter-acted the advanced pubertal onset. Animals that underwent the NICU protocol also displayed maturational acceleration in terms of the loss of the rooting reflex in addition to hyperalgesia, a reduced preference for a novel conspecific, blunted basal plasma corticosterone and reduced hippocampal glucocorticoid receptor expression. These alterations closely simulated the clinical effects of early life adversity in terms of disruptions in the hypothalamic pituitary "stress" axis, social communication and engagement, tactile system processing, and accelerated maturation. Moreover, sensory enrichment attenuated many of these behavioral and neurophysiological alterations, and even slowed maturation. Overall, this supports the translatability of our novel rodent model and its potential utility in understanding how brain maturation and quality of early life experiences may interact to shape the integrity of stress and sensory system development. Future work must determine the appropriate modalities and parameters (e.g. patterning, timing) for effective sensory enrichment interventions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.psyneuen.2018.07.029DOI Listing

Publication Analysis

Top Keywords

early life
24
sensory enrichment
16
life stress
12
enrichment interventions
8
neurobiobehavioral consequences
8
rodent model
8
rats exposed
8
exposed early
8
distress calls
8
early
6

Similar Publications

18F-Sodium Fluoride PET/CT as a Tool to Assess Enthesopathies in X-Linked Hypophosphatemia.

Calcif Tissue Int

January 2025

Endocrinology Department, School of Medicine, Pontificia Universidad Católica de Chile, Av. Diagonal Paraguay 262, Cuarto Piso, Santiago, Chile.

X-linked hypophosphatemia (XLH) is a rare metabolic disorder characterized by elevated FGF23 and chronic hypophosphatemia, leading to impaired skeletal mineralization and enthesopathies that are associated with pain, stiffness, and diminished quality of life. The natural history of enthesopathies in XLH remains poorly defined, partly due to absence of a sensitive quantitative tool for assessment and monitoring. This study investigates the utility of 18F-NaF PET/CT scans in characterizing enthesopathies in XLH subjects.

View Article and Find Full Text PDF

Introduction: Arteriovenous (AV) fistula creation is the most common surgical procedure for providing vascular access for haemodialysis in patients with chronic kidney disease (CKD). The functioning of fistula dictates the quality of dialysis and the longevity of patients. The most common circumstances that require surgical takedown of AV fistula are thrombosis and rupture.

View Article and Find Full Text PDF

The developmental lipidome of Nippostrongylus brasiliensis.

Parasit Vectors

January 2025

Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia.

Background: Nippostrongylus brasiliensis-a nematode of rodents-is commonly used as a model to study the immunobiology of parasitic nematodes. It is a member of the Strongylida-a large order of socioeconomically important parasitic nematodes of animals. Lipids are known to play essential roles in nematode biology, influencing cellular membranes, energy storage and/or signalling.

View Article and Find Full Text PDF

Purpose: This study examined the effects of individualized dietary modifications based on the volume-viscosity swallow test (V-VST) on functional oral intake, incidence of pneumonia, and swallowing-related quality of life in individuals with intracerebral hemorrhage.

Methods: One hundred and seven participants with signs of dysphagia in the acute and early subacute phases of stroke following intracerebral hemorrhage were randomly assigned into an experimental group for individualized dietary modifications based on V-VST plus routine standard care (n = 53), and a control group for routine care alone (n = 54). Incidence of pneumonia, functional oral intake scale (FOIS) ratings and Eating Assessment Tool (EAT-10) scores before and after intervention were evaluated.

View Article and Find Full Text PDF

An automatic cervical cell classification model based on improved DenseNet121.

Sci Rep

January 2025

Department of Biomedical Engineering, School of Life Science and Technology, Changchun University of Science and Technology, Changchun, 130022, China.

The cervical cell classification technique can determine the degree of cellular abnormality and pathological condition, which can help doctors to detect the risk of cervical cancer at an early stage and improve the cure and survival rates of cervical cancer patients. Addressing the issue of low accuracy in cervical cell classification, a deep convolutional neural network A2SDNet121 is proposed. A2SDNet121 takes DenseNet121 as the backbone network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!