We characterize Rv0474, a putative transcriptional regulatory protein of Mycobacterium tuberculosis, which is found to function as a copper-responsive transcriptional regulator at toxic levels of copper. It is an autorepressor, but at elevated levels (10-250 μm) of copper ions the repression is relieved resulting in an increase in Rv0474 expression. Copper-bound Rv0474 is recruited to the rpoB promoter leading to its repression resulting in the growth arrest of the bacterium. Mutational analysis showed that the helix-turn-helix and leucine zipper domains of Rv0474 are essential for its binding to Rv0474 and rpoB promoters, respectively. The mechanism of Rv0474-mediated rpoB regulation seems to be operational only in pathogenic mycobacteria that can persist inside the host.

Download full-text PDF

Source
http://dx.doi.org/10.1111/febs.14637DOI Listing

Publication Analysis

Top Keywords

copper-responsive transcriptional
8
transcriptional regulator
8
mycobacterium tuberculosis
8
rv0474
6
rv0474 copper-responsive
4
regulator negatively
4
negatively regulates
4
regulates expression
4
expression rna
4
rna polymerase
4

Similar Publications

Unlabelled: The ability to sense, import but also detoxify copper (Cu) has been shown to be crucial for microbial pathogens to survive within the host. Previous studies conducted with the opportunistic human fungal pathogen ( ) have revealed two extreme Cu environments encountered during infection: A high Cu environment within the lung and a low Cu environment within the brain. However, how senses these different host Cu microenvironments, and the consequences of a blunted Cu stress adaption for pathogenesis, are not well understood.

View Article and Find Full Text PDF

Copper (Cu) is essential for respiration, neurotransmitter synthesis, oxidative stress response, and transcription regulation, with imbalances leading to neurological, cognitive, and muscular disorders. Here we show the role of a novel Cu-binding protein (Cu-BP) in mammalian transcriptional regulation, specifically on skeletal muscle differentiation using murine primary myoblasts. Utilizing synchrotron X-ray fluorescence-mass spectrometry, we identified murine cysteine-rich intestinal protein 2 (mCrip2) as a key Cu-BP abundant in both nuclear and cytosolic fractions.

View Article and Find Full Text PDF

CuBe: a geminivirus-based copper-regulated expression system suitable for post-harvest activation.

Plant Biotechnol J

January 2025

Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, Valencia, Spain.

The growing demand for sustainable platforms for biomolecule manufacturing has fuelled the development of plant-based production systems. Agroinfiltration, the current industry standard, offers several advantages but faces limitations for large-scale production due to high operational costs and batch-to-batch variability. Alternatively, here, we describe the CuBe system, a novel bean yellow dwarf virus (BeYDV)-derived conditional replicative expression platform stably transformed in Nicotiana benthamiana and activated by copper sulphate (CuSO), an inexpensive and widely used agricultural input.

View Article and Find Full Text PDF

Bacteria use diverse strategies and molecular machinery to maintain copper homeostasis and to cope with its toxic effects. Some genetic elements providing copper resistance are acquired by horizontal gene transfer; however, little is known about how they are controlled and integrated into the central regulatory network. Here, we studied two copper-responsive systems in a clinical isolate of Pseudomonas paraeruginosa and deciphered the regulatory and cross-regulation mechanisms.

View Article and Find Full Text PDF

Copper (Cu) is an essential trace element required for respiration, neurotransmitter synthesis, oxidative stress response, and transcriptional regulation. Imbalance in Cu homeostasis can lead to several pathological conditions, affecting neuronal, cognitive, and muscular development. Mechanistically, Cu and Cu-binding proteins (Cu-BPs) have an important but underappreciated role in transcription regulation in mammalian cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!