Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Spores of the genus Bacillus are able to resist ionizing radiations and therefore they are a suitable biological model for studies in Astrobiology, i.e. the multidisciplinary approach to the study of the origin and evolution of life on Earth and in the universe. The resistance to γ-radiation is an important issue in Astrobiology in relation to the search for bacterial species that could adapt to life in space. This study investigates the resistance of spores of the thermophilic bacteria Parageobacillus thermantarcticus to γ-rays. The analysis of spores' response to irradiation at a molecular level is performed by means of Raman spectroscopy that allows to get insights in the sequence of events taking place during inactivation. The role of the γ-rays' dose in the inactivation of spores is also investigated, allowing to highlight the mechanism(s) of inactivation including DNA damage, protein denaturation and calcium dipicolinate levels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00792-018-1049-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!