Endosomal sorting and trafficking, the retromer complex and neurodegeneration.

Mol Psychiatry

Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 191040, USA.

Published: June 2019

The retromer is a highly conserved multimeric protein complex present in all eukaryotic cells whose activity is essential for regulating the recycling and retrieval of numerous protein cargos from the endosome to trans-Golgi network or the cell surface. In recent years, molecular and genomic studies have provided evidence that aberrant regulation of endosomal protein sorting and trafficking secondary to a dysfunction of the retromer complex could be implicated in the pathogenesis of several neurodegenerative diseases. Thus, deficiency or mutations in one or more protein components of the retromer leads to increased accumulation of protein aggregates, as well as enhanced cellular neurotoxicity. In this review, we will discuss the structure and function of the retromer complex and its neurobiology, its relevance to key molecules involved in neurodegeneration and the potential role that it plays in the development of two major neurodegenerative disorders, Parkinson's disease and Alzheimer's disease. Finally, we will discuss the viability of targeting the retromer via pharmacological chaperones or genetic approaches to enhance or restore its function as a novel and unifying disease-modifying strategy against these diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6378136PMC
http://dx.doi.org/10.1038/s41380-018-0221-3DOI Listing

Publication Analysis

Top Keywords

retromer complex
12
sorting trafficking
8
will discuss
8
retromer
6
protein
5
endosomal sorting
4
trafficking retromer
4
complex
4
complex neurodegeneration
4
neurodegeneration retromer
4

Similar Publications

EhVps35, a retromer component, is involved in the recycling of the EhADH and Gal/GalNac virulent proteins of .

Front Parasitol

March 2024

Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional [CINVESTAV-Instituto Politécnico Nacional (IPN)], Mexico City, Mexico.

The retromer is a highly conserved eukaryotic complex formed by the cargo selective complex (CSC) and the sorting nexin (SNX) dimer subcomplexes. Its function is protein recycling and recovery from the endosomes to conduct the target molecules to the trans-Golgi network or the plasma membrane. The protozoan responsible for human amoebiasis, , exhibits an active membrane movement and voracious phagocytosis, events in which the retromer may be fully involved.

View Article and Find Full Text PDF

A Commander-independent function of COMMD3 in endosomal trafficking.

bioRxiv

December 2024

Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.

Endosomal recycling is a branch of intracellular membrane trafficking that retrieves endocytosed cargo proteins from early and late endosomes to prevent their degradation in lysosomes. A key player in endosomal recycling is the Commander complex, a 16-subunit protein assembly that cooperates with other endosomal factors to recruit cargo proteins and facilitate the formation of tubulo-vesicular carriers. While the crucial role of Commander in endosomal recycling is well established, its molecular mechanism remains poorly understood.

View Article and Find Full Text PDF

SNX3 mediates heart failure by interacting with HMGB1 and subsequently facilitating its nuclear-cytoplasmic translocation.

Acta Pharmacol Sin

January 2025

National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.

Sorting nexins (SNXs) as the key regulators of sorting cargo proteins are involved in diverse diseases. SNXs can form the specific reverse vesicle transport complex (SNXs-retromer) with vacuolar protein sortings (VPSs) to sort and modulate recovery and degradation of cargo proteins. Our previous study has shown that SNX3-retromer promotes both STAT3 activation and nuclear translocation in cardiomyocytes, suggesting that SNX3 might be a critical regulator in the heart.

View Article and Find Full Text PDF

Molecular Insights into the Regulation of GNPTAB by TMEM251.

bioRxiv

December 2024

Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.

In vertebrates, newly synthesized lysosomal enzymes traffick to lysosomes through the mannose-6-phosphate (M6P) pathway. The Golgi membrane protein TMEM251 was recently discovered to regulate lysosome biogenesis by controlling the level of GlcNAc-1-phosphotransferase (GNPT). However, its precise function remained unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!