Algal blooms in lakes are often associated with anthropogenic eutrophication; however, they can occur without the human introduction of nutrients to a lake. A rare bloom of the alga sp. strain ML occurred in the spring of 2016 at Mono Lake, a hyperalkaline lake in California, which was also at the apex of a multiyear-long drought. These conditions presented a unique sampling opportunity to investigate microbiological dynamics and potential metabolic function during an intense natural algal bloom. We conducted a comprehensive molecular analysis along a depth transect near the center of the lake from the surface to a depth of 25 m in June 2016. Across sampled depths, rRNA gene sequencing revealed that -associated chloroplasts were found at 40 to 50% relative abundance, greater than values recorded previously. Despite high relative abundances of the photosynthetic oxygenic algal genus , oxygen declined below detectable limits below a depth of 15 m, corresponding with an increase in microorganisms known to be anaerobic. In contrast to previously sampled years, both metagenomic and metatranscriptomic data suggested a depletion of anaerobic sulfate-reducing microorganisms throughout the lake's water column. Transcripts associated with photosystem I and II were expressed at both 2 m and 25 m, suggesting that limited oxygen production could occur at extremely low light levels at depth within the lake. Blooms of appear to correspond with a loss of microbial activity such as sulfate reduction within Mono Lake, yet microorganisms may survive within the sediment to repopulate the lake water column as the bloom subsides. Mono Lake, California, provides a habitat to a unique ecological community that is heavily stressed due to recent human water diversions and a period of extended drought. To date, no baseline information exists from Mono Lake to understand how the microbial community responds to human-influenced drought or algal bloom or what metabolisms are lost in the water column as a consequence of such environmental pressures. While previously identified anaerobic members of the microbial community disappear from the water column during drought and bloom, sediment samples suggest that these microorganisms survive at the lake bottom or in the subsurface. Thus, the sediments may represent a type of seed bank that could restore the microbial community as a bloom subsides. Our work sheds light on the potential photosynthetic activity of the halotolerant alga sp. strain ML and how the function and activity of the remainder of the microbial community responds during a bloom at Mono Lake.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6193381PMC
http://dx.doi.org/10.1128/AEM.01171-18DOI Listing

Publication Analysis

Top Keywords

mono lake
24
water column
16
microbial community
16
lake
12
bloom
8
alga strain
8
lake california
8
algal bloom
8
microorganisms survive
8
bloom subsides
8

Similar Publications

Heteropolyacid Ligands in Two-Dimensional Channels Enable Lithium Separation from Monovalent Cations.

ACS Nano

January 2025

Institute of Molecular Plus, Department of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China.

Extracting lithium from salt lakes requires ion-selective membranes with customizable nanochannels. However, it remains a major challenge to separate alkali cations due to their same valences and similar ionic radius. Inspired by the K channel of KcsA K, significant progress has been made in adjusting nanochannel size to control the ion selectivity dominated by alkali cations dehydration.

View Article and Find Full Text PDF

The synthesis of polymer/oligomer-stabilized metal nanostructures (MNS) opens up a wide range of possibilities, from fundamental materials science to practical applications in domains such as medicine, catalysis, sensing, and energy. Because of the versatility of this synthetic approach, it is a dynamic and ever-changing field of study. These polymers/oligomers have precise control over the nucleation and growth kinetics, allowing the production of mono-disperse MNS with well-defined properties.

View Article and Find Full Text PDF

Association between prenatal exposure to phthalate esters and blood pressure in children aged 3-7 years: A prospective cohort study.

Ecotoxicol Environ Saf

December 2024

School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, China; Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, China. Electronic address:

Background: An increasing number of animal studies have indicated that exposure to phthalate esters (PAEs) may cause high blood pressure. However, population-based evidence is limited, particularly for pregnant women and young children.

Objective: To examine the correlation between prenatal exposure to phthalate ester metabolites (mPAEs) and blood pressure in preschool children.

View Article and Find Full Text PDF

Simultaneous separation and detection of common chiral and achiral metabolites in the urine of human exposed to benzene series by LC-MS/MS.

J Chromatogr B Analyt Technol Biomed Life Sci

January 2025

School of Ecology and Environment, Yuzhang Normal University, No.1999, Meiling Ave., Honggutan Dist., Nanchang 330103, Jiangxi, China.

Benzene, toluene, and xylene (BTX) are priority pollutants known for their hematotoxicity and carcinogenic properties. Benzene is further metabolized to phenyl mercapturic acid (PMA), toluene and xylene also generate benzyl mercapturic acid (BMA) in human urine. To confirm whether the exposure to benzene series comes from the workplace or from the external environment such as smoking is a very meaningful work, so accurate measurement of their biomarkers in biological samples is crucial.

View Article and Find Full Text PDF

Global Environmental and Toxicological Data of Emerging Plasticizers: Current Knowledge, Regrettable Substitution Dilemma, Green Solution and Future Perspectives.

Green Chem

May 2024

State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China.

The global plasticizer market is projected to increase from $17 billion in 2022 to $22.5 billion in 2027. Various emerging/alternative plasticizers entered the market following the ban on several phthalate plasticizers because of their harmful effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!