Background: Silver nanoparticles are toxic to bacteria and have widespread application in different research areas.
Objective: The aim of this study was to synthesize silver nanoparticles using an aqueous leaf extract of Cestrum nocturnum and to test its antioxidant and antibacterial activities.
Materials And Methods: The silver nanoparticles were synthesized by addition of 20 ml extract (8% w/v) with 180 ml silver nitrate solution (1 mM). The synthesis of silver nanoparticles was confirmed by UV-Vis spectrophotometer. The silver nanoparticles were characterized by X-ray diffractometer, Transmission Electron Microscope, Scanning Electron Microscope and Fourier Transform Infra-Red spectroscopy. The antioxidant property of silver nanoparticles was analyzed by the 2, 2-diphenyl-1-picrylhydrazyl, hydrogen peroxide, hydroxyl radical and superoxide radical scavenging methods. The bacteriostatic and bactericidal activity of silver nanoparticles against Escherichiacoli, Enterococcusfaecalis, and Salmonellatyphi was determined using bacterial growth inhibition method. The antibacterial sensitivity and Minimum Inhibitory Concentration (MIC) of silver nanoparticles was determined against the bacteria.
Results: The results confirmed that the silver nanoparticles synthesized by C.nocturnum extract were crystalline in nature, average particle size was 20 nm and were mostly spherical in shape. The antioxidant methods confirmed that the silver nanoparticles have more antioxidant activity as compared to vitamin C. The silver nanoparticles have strong antibacterial (maximum Vibrio cholerae and minimum E. faecalis) activity. The MIC value of silver nanoparticles was 16 μg/ml (Citrobacter), 4 μg/ml (E. faecalis), 16 μg/ml (S. typhi), 8 μg/ml (E. coli), 8 μg/ml (Proteusvulgaris), and 16 μg/ml (V. cholerae).
Conclusion: Green synthesized silver nanoparticles have strong antioxidant and antibacterial activity due to the presence of bioactive molecules on the surface of silver nanoparticles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7125370 | PMC |
http://dx.doi.org/10.1016/j.jaim.2017.11.003 | DOI Listing |
Odontology
January 2025
Oral Biology Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt.
Natural bone is a self-regenerating nanocomposite made of proteins and minerals. Such self-regenerative capacity can be negatively affected by certain diseases involving the bone or its surrounding tissues. Our study assesses the ability of bone grafting material to regenerate bone in animals who have artificially created critical-sized defects.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Department of Mechanochemistry, Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia.
In the original publication [...
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
We aimed to synthesize silver nanoparticles (AgNPs) using (cardamom) extracts and assess the cytotoxicity and genotoxicity of the cardamom extract, -AgNPs, and the insecticide ATCBRA-commonly used for pest control-on the root system of (broad bean). The chemical composition of the aqueous cardamom extract was identified and quantified using GC-MS, revealing a variety of bioactive compounds also present in cardamom essential oil. These included α-terpinyl acetate (21.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Department of Chemistry and NIS Centre, University of Torino, Via Giuria 7, 10125 Torino, Italy.
Heavy metals are life-threatening pollutions because of their great toxicity, long-term persistence in nature and their bioaccumulation in living organisms. In this work, we performed multivariate curve resolution-alternating least squares analysis of UV-Vis raw spectra received by a colorimetric sensor constructed on mercaptoundecanoic acid functionalized silver nanoparticles (AgNPs@11MUA) to detect Cd, Cu, Mn, Ni, and Zn in water. This combined approach allowed the rapid identification and quantification of multiple heavy metals and showed adequate sensitivity and selectivity, thus representing a promising analytical and computational method for both laboratory and field applications such as environmental safety and public health monitoring.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Department of Textiles, Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva 12, 1000 Ljubljana, Slovenia.
A smart viscose fabric with temperature and pH responsiveness and proactive antibacterial and UV protection was developed. PNCS (poly-(N-isopropylakrylamide)/chitosan) hydrogel was used as the carrier of silver nanoparticles (Ag NPs), synthesised in an environmentally friendly manner using AgNO and a sumac leaf extract. PNCS hydrogel and Ag NPs were applied to the viscose fabric by either in situ synthesis of Ag NPs on the surface of viscose fibres previously modified with PNCS hydrogel, or by the direct immobilisation of Ag NPs by the dehydration/hydration of the PNCS hydrogel with the nanodispersion of Ag NPs in the sumac leaf extract and subsequent application to the viscose fibres.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!