A spectral camera based on ghost imaging via sparsity constraints (GISC) acquires a three-dimensional (3D) spatial-spectral data cube of the target through a two-dimensional (2D) detector in a single snapshot. However, the spectral and spatial resolution are interrelated because both of them are modulated by the same spatial random phase modulator. In this paper, we theoretically and experimentally demonstrate a system by equipping the GISC spectral camera with a flat-field grating to disperse the light fields before the spatial random phase modulator, hence consequently decoupling the spatial and spectral resolution. By theoretical derivation of the imaging process we obtain the spectral resolution 1nm and spatial resolution 50μm about the new system which are verified by the experiment. The new system can not only modulate the spatial and spectral resolution separately, but also provide a possibility of optimizing the light field fluctuations of different wavelengths according to the imaging scene.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.26.017705 | DOI Listing |
Anal Chem
January 2025
Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-41061, United States.
Glow discharge optical emission spectrometry (GDOES) allows fast and simultaneous multielemental analysis directly from solids and depth profiling down to the nanometer scale, which is critical for thin-film (TF) characterization. Nevertheless, operating conditions for the best limits of detection (LODs) are compromised in lieu of the best sputtering crater shapes for depth resolution. In addition, the fast transient signals from ultra-TFs do not permit the optimal sampling statistics of bulk analysis such that LODs are further compromised.
View Article and Find Full Text PDFJ Paleolimnol
December 2024
Institute of Geography and Oeschger Center for Climate Change Research, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland.
Unlabelled: Cyanobacteria are ubiquitous aquatic organisms with a remarkable evolutionary history reaching as far as 1.9 Ga. They play a vital role in ecosystems yet also raise concerns due to their association with harmful algal blooms.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China.
The hydrogen dissociation and spillover mechanism on oxide-supported Cu catalysts play a pivotal role in the hydrogenation of carbon dioxide to methanol. This study investigates the hydrogen spillover mechanism on Cu/CeO catalysts using spectral characterization under high-pressure reaction conditions and density functional theory (DFT) simulations. The research confirms that the Cu sites serve as the initial dissociation points for the hydrogen molecules.
View Article and Find Full Text PDFPhotoacoustics
February 2025
Erasmus MC, Cardiovascular Institute, Department of Cardiology, Biomedical Engineering, Rotterdam, The Netherlands.
Photoacoustic imaging offers optical contrast images of human tissue at acoustic resolution, making it valuable for diverse clinical applications. However, quantifying tissue composition via optical contrast remains challenging due to the unknown light fluence within the tissue. Here, we propose a method that leverages known chromophores (, arterial blood) to improve the accuracy of quantitative photoacoustic imaging.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, China.
Background: Intraoperative imaging is critical for achieving precise cancer resection. Among available techniques, Raman spectral imaging emerges as a promising modality due to its high spatial resolution and signal stability. However, its clinical application for in vivo imaging is limited by the inherently weak Raman scattering signal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!