Distributed acoustic sensing (DAS) via fiber-optic reflectometry techniques is finding more and more applications in recent years. In many of these applications, the position of detected acoustic or seismic sources is defined with a single longitudinal coordinate which specifies the distance between the detection point in the fiber to the DAS interrogator. In this paper we describe a DAS system which is intended to operate in a fluid (air or water) and to detect and localize moving objects, with three spatial coordinates, using the acoustic waves they generate or reflect and their Doppler shifts. The new method uses optical frequency domain reflectometry (OFDR) and lumped Rayleigh reflectors (LRR's) to ensure sufficiently high sensitivity for operation in fluid media. The new method was used to track a narrowband (CW) signal source.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.26.017690 | DOI Listing |
Sci Total Environ
January 2025
Center for Marine Sensors, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, 26382 Wilhelmshaven, Germany.
Microplastics (MP) are known to be ubiquitous. The pathways and fate of these contaminants in the marine environment are receiving increasing attention, but still knowledge gaps exist. In particular, the link between mass-based MP quantification and oceanographic parameters is often lacking.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Oceanography and Spatial Information, China University of Petroleum East China-Qingdao Campus, Qingdao 266580, China.
Salt marsh vegetation in the Yellow River Delta, including (), (), and (), is essential for the stability of wetland ecosystems. In recent years, salt marsh vegetation has experienced severe degradation, which is primarily due to invasive species and human activities. Therefore, the accurate monitoring of the spatial distribution of these vegetation types is critical for the ecological protection and restoration of the Yellow River Delta.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China.
This study addresses the challenges of electromagnetic interference and unstable signal transmission encountered by traditional sensors in detecting partial discharge (PD) within stator slots of large motors. A novel Extrinsic Fabry-Perot Interferometer (EFPI) sensor with a vibration-coupling air gap was designed to enhance the narrowband resonant detection sensitivity for PD ultrasonic signals by optimizing the diaphragm structure and coupling interface. The sensor features a quartz diaphragm with a thickness of 20 μM, an effective constrained radius of 0.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Resources and Safety Engineering, Central South University, Changsha 410083, China.
This study aims to investigate the influence of cadmium (Cd) speciation transformation on P-wave velocity under different soil moisture conditions, providing critical insights into the subsurface characteristics of contaminated soils. Taking Cd-contaminated soil as the research subject, P-wave velocity and the speciation distribution of Cd in soils with different moisture contents and Cd adsorption levels were measured. The results reveal that when the soil is contaminated by Cd, the porosity is altered and it eventually lead to change P-wave velocity.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Laboratory for Testing and Materials, Department of Mechanics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou Campus, 157 73 Athens, Greece.
The fracture process of heterogeneous materials is studied here in the framework of the discipline of Non-Extensive Statistical Mechanics. Acoustic emission data provided by an experimental protocol with concrete specimens, plain or fiber-reinforced, under bending are taken advantage of. This innovation of the study lies in the fact that the analysis of the acoustic activity is implemented in terms of the energy content of the acoustic signals rather than of their interevent time or their interevent distance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!