The interaction between light and matter during laser machining is particularly challenging to model via analytical approaches. Here, we show the application of a statistical approach that constructs a model of the machining process directly from experimental images of the laser machined sample, and hence negating the need for understanding the underlying physical processes. Specifically, we use a neural network to transform a laser spatial intensity profile into an equivalent scanning electron microscope image of the laser-machined target. This approach enables the simulated visualization of the result of laser machining with any laser spatial intensity profile, and hence demonstrates predictive capabilities for laser machining. The trained neural network was found to have encoded functionality that was consistent with the laws of diffraction, hence showing the potential of this approach for discovering physical laws directly from experimental data.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.26.017245DOI Listing

Publication Analysis

Top Keywords

laser machining
16
neural network
12
predictive capabilities
8
capabilities laser
8
directly experimental
8
laser spatial
8
spatial intensity
8
intensity profile
8
laser
7
machining
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!