The precise calibration of optical lattice depth is an important step in the experiments of ultracold atoms in optical lattices. The Raman-Nath diffraction method, as the most commonly used method of calibrating optical lattice depth, has a limited range of validity and the calibration accuracy is not high enough. Based on multiple pulses Kapitza-Dirac diffraction, we propose and demonstrate a new calibration method by measuring the fully transfer fidelity of the first diffraction order. The high sensitivity of the transfer fidelity to the lattice depth ensures the highly precision calibration of the optical lattice depth. For each lattice depth measured, the calibration uncertainty is further reduced to less than 0.6% by applying the Back-Propagation Neural Network Algorithm. The accuracy of this method is almost one order of magnitude higher than that of the Raman-Nath diffraction method, and it has a wide range of validity applicable to both shallow lattices and deep lattices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.26.016726 | DOI Listing |
Materials (Basel)
January 2025
Shandong Zhuoyue Precision Industry Group Co., Ltd., Jining 272114, China.
The 7000 series aluminum alloy represented by Al-Zn-Mg-Cu has good strength and toughness and is widely used in the aerospace field. However, its high Zn content results in poor corrosion resistance, limiting its application in other fields. In order to achieve the synergistic improvement of both strength and corrosion resistance, this study examines the response of strength, toughness and corrosion resistance of a high-strength aluminum alloy tail frame under aging conditions with external stresses of 135 MPa, 270 MPa and 450 MPa.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Chinese Academy of Sciences, 19 jia, Yuquan Road, Shijingshan District, Beijing, Beijing, 100049, CHINA.
Previous studies of the transition metal chalcogenide Ta2NiSe5 has identified two phase transitions occurring between 0-10GPa, involving the excitonic insulator-to-semiconductor transition at 1GPa and the semiconductor-to-semimetal transition at 3GPa. However, there is still a lack of in-depth research on the changes in its physical properties changes above 10GPa. In this study, Ta2NiSe5 were investigated under high-pressure conditions using high-pressure X-ray diffraction and high-pressure X-ray absorption experiments.
View Article and Find Full Text PDFAppl Radiat Isot
January 2025
China Institute of Atomic Energy, Beijing, 102413, China.
This paper presents a comprehensive and detailed analysis of the OECD-NEA MOX fuel benchmark based on different nuclear data libraries to investigate the reliability and accuracy of the Dragon5 lattice code developed by École Polytechnique de Montréal for the neutronic analysis of mixed uranium-plutonium oxide (MOX) fuel. The neutronics and burn-up calculations for rectangular pin and assembly geometries filled with different compositions of MOX fuel are computed. The performance of different nuclear data libraries is evaluated.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States.
J Hazard Mater
December 2024
School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China.
The utilization of silicomanganese slag (SMS) for the partial substitution of cement holds significant importance in handling environmental risks and achieving the harmless and resourceful utilization of industrial solid wastes. Nevertheless, an in-depth analysis of the leaching behaviors of heavy metals and the solidification/stabilization mechanisms in SMS and cementitious materials is still lacking. In this study, we adopted the toxicity characteristic leaching procedure and horizontal vibration method to simulate the natural leaching environment, thereby exploring the leaching risks related to heavy metals in the aforementioned materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!