Experimental realization of the Kitaev model is a greatly attractive topic due to the potential applications to build robust qubits against decoherence in topological quantum computation. In this work, we investigate the charged whispering-gallery microcavity array model and simulate the normal Kitaev chain under this mechanism in the first time. We find that the system reveals profound connections with the normal Kitaev chain and its some derivatives, and the topological property of the system depends on effective optomechanical coupling strength deeply. In optomechanically induced Kitaev topologically nontrivial phase, compared to the normal Kitaev chain in the Majorana basis, the novel and distinct structure of charged whispering-gallery microcavity array model leads to controllable photonic and phononic edge localization. Furthermore, we also simulate the extended Kitaev chain and show that two topologically different nontrivial phases of the system allow one to realize more freewheeling controllable photonic and phononic edge localization. Our model offers an alternative approach to correlate with other more complicated one-dimensional noninteracting spinless topological systems relevant to the p-wave superconducting pairing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.26.016250 | DOI Listing |
Nat Commun
January 2025
TCM Group, Cavendish Laboratory, Department of Physics, Cambridge, UK.
We report on a class of gapped projected entangled pair states (PEPS) with non-trivial Euler topology motivated by recent progress in band geometry. In the non-interacting limit, these systems have optimal conditions relating to saturation of quantum geometrical bounds, allowing for parent Hamiltonians whose lowest bands are completely flat and which have the PEPS as unique ground states. Protected by crystalline symmetries, these states evade restrictions on capturing tenfold-way topological features with gapped PEPS.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom.
Quasiparticles are low-energy excitations with important roles in condensed matter physics. An intriguing example is provided by Majorana quasiparticles, which are equivalent to their antiparticles. Despite being implicated in neutrino oscillations and topological superconductivity, their experimental realizations remain very rare.
View Article and Find Full Text PDFPhys Rev E
November 2024
School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin D04 C932, Ireland.
Topology in many-body physics usually emerges as a feature of equilibrium quantum states. We show that topological fingerprints can also appear in the relaxation rates of open quantum systems. To demonstrate this we consider one of the simplest models that has two topologically distinct phases in its ground state: the Kitaev chain model for the p-wave superconductor.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Computational Nanoelectronics Group, University of Zagreb Faculty of Electrical Engineering and Computing, HR 10000 Zagreb, Croatia.
The problems of disorder and insufficient system length are generally regarded as central problems in the realization of Majorana zero modes (MZM), which are a promising platform for realizing fault-tolerant topological quantum computing (TQC). In this work, we analyze eigenenergy spectra and transport properties of finite Kitaev chains using quantum transport simulations in a wide design space of hopping amplitude (), superconductor pairing (Δ), and electrochemical potential. Our goal is to determine critical or minimum acceptable chain lengths to obtain oscillation-free MZMs with suitable microsecond coherence times, and observable zero-bias conductance peaks (ZBCP) quantized almost at ~2/.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2024
M. N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, Ekaterinburg 620990, Russia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!