Evolution of next generation wireless networks brings challenges to efficiently transmit a large amount of data from a base station to a remote antenna unit. We investigate a space division multiplexing technique that employs few mode fibers (FMFs) to transmit 3 × 3 MIMO wireless signals, aiming to employ a common digital signal processing (DSP) unit to equalize both the fiber and wireless channel. We optimize system parameters and obtain above 28 dB and 23 dB signal-to-interference and noise ratio (SINR) for 3 meters wireless systems with 500 m and 2 km FMF, which correspond to the transmission capacity of 578 Mb/s and 468 Mb/s using a 20 MHz bandwidth, respectively. Moreover, we analyze that the nonlinear spectrum distortion due to the combined effect of nonlinearity in the directly modulated laser and the differential mode delay in multimode fibers and validate it by simulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.26.020507 | DOI Listing |
Entropy (Basel)
January 2025
Department of Electronics and Telecommunications (DET), Politecnico di Torino, 10129 Turin, Italy.
Quadratic forms with random kernel matrices are ubiquitous in applications of multivariate statistics, ranging from signal processing to time series analysis, biomedical systems design, wireless communications performance analysis, and other fields. Their statistical characterization is crucial to both design guideline formulation and efficient computation of performance indices. To this end, random matrix theory can be successfully exploited.
View Article and Find Full Text PDFJ Physiol Sci
January 2025
Department of Integrative Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan. Electronic address:
Experiments measuring evoked potentials require flexible and rapid adjustment of stimulation and recording parameters. In this study, we have developed a recording system and an associated Android application that allow making such adjustments wirelessly. The system consists of 3 units: for stimulation, recording and control.
View Article and Find Full Text PDFNanophotonics
January 2025
Key Laboratory for Information Science of Electromagnetic Waves, School of Information Science and Technology, Fudan University, Shanghai 200433, China.
Gesture recognition plays a significant role in human-machine interaction (HMI) system. This paper proposes a gesture-controlled reconfigurable metasurface system based on surface electromyography (sEMG) for real-time beam deflection and polarization conversion. By recognizing the sEMG signals of user gestures through a pre-trained convolutional neural network (CNN) model, the system dynamically modulates the metasurface, enabling precise control of the deflection direction and polarization state of electromagnetic waves.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
Mechanical force attracts booming attention with the potential to tune the tumor cell behavior, especially in cell migration. However, the current approach for introducing mechanical input is difficult to apply in vivo. How the mechanical force affects cell behavior in situ also remains unclear.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Electromagnetic Space, Southeast University, Nanjing, China.
Holographic multiple-input multiple-output (MIMO) method leverages spatial diversity to enhance the performance of wireless communications and is expected to be a key technology enabling for high-speed data services in the forthcoming sixth generation (6G) networks. However, the antenna array commonly used in the traditional massive MIMO cannot meet the requirements of low cost, low complexity and high spatial resolution simultaneously, especially in higher frequency bands. Hence it is important to achieve a feasible hardware platform to support theoretical study of the holographic MIMO communications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!