Waveguide-based biochemical sensors exploit detection of target molecules that bind specifically to a functionalized waveguide surface. For optimum sensitivity, the waveguide should be designed to mediate maximum influence of the surface layer on the effective refractive index of the guided mode. In this paper, we define a surface sensitivity metric which quantifies this impact and which allows to broadly compare different waveguide types and integration platforms. Focusing on silicon nitride and silicon-on-insulator (SOI) as the most common material systems, we systematically analyze and optimize a variety of waveguide types, comprising simple strips, slot and double slot structures, as well as sub-wavelength gratings (SWG). Comparing the highest achievable surface sensitivities, we provide universal design guidelines and physically interpret the observed trends and limitations. Our findings allow to select the appropriate WG platform and to optimize sensitivity for a given measurement task.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.26.019885 | DOI Listing |
Heliyon
December 2024
Faculty of Electrical and Computer Engineering, Semnan University, Semnan, Iran.
Optical sensors are among the most significant optical devices that have found extensive applications for THz sensing. Surface plasmon-based sensors have attracted increasing attention more than other kinds of optical sensors such as photonic crystal, optical fiber, and graphene sensors, owing to their compact footprint, fast reaction, and high sensitivity value. Therefore, this work reviews plasmonic sensor structures divided into three general categories.
View Article and Find Full Text PDFA wavelength demodulation method for ultra-short fiber Bragg grating (US-FBG) sensors based on an arrayed waveguide grating (AWG) and a convex optimization algorithm is proposed and demonstrated. Instead of measuring the output power ratio of the two adjacent AWG channels as previously done, in this work the wavelength demodulation is realized by reconstructing the US-FBG spectrum. The principle of spectral reconstruction involves using an AWG to sample the spectral information of US-FBG and constructing underdetermined matrix equations with the obtained prior information on transmission responses and the detected output power from multiple AWG channels.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Université Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, 75013 Paris, France.
Harnessing high-dimensional entangled states of light presents a frontier for advancing quantum information technologies, from fundamental tests of quantum mechanics to enhanced computation and communication protocols. In this context, the spatial degree of freedom stands out as particularly suited for on-chip integration. But while traditional demonstrations produce and manipulate path-entangled states sequentially with discrete optical elements, continuously coupled nonlinear waveguide systems offer a promising alternative where photons can be generated and interfere along the entire propagation length, unveiling novel capabilities within a reduced footprint.
View Article and Find Full Text PDFNanophotonics
April 2024
School of Physics & State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China.
Sharp-bending waveguide is a key element for ultra-compact and densely integrated photonic devices, which is promising to enlarge the capability of modern information processing in a single chip. Topological photonics manifest the nature of robust propagation against sharp bending and such robustness has been experimentally demonstrated in topological integrated interfaces. It is important to quantify the bending loss of topological interface but has remained exclusive.
View Article and Find Full Text PDFSci Rep
November 2024
Electronics and Communications Department, Faculty of Engineering, Delta University for Science and Technology, Gamasa, Egypt.
This research aims to contribute significantly to the field of plasmonic filtering technology within modern optical communication systems. By focusing on the development of a high-performance, more compact, and efficient design, this study explores the potential of hybrid plasmonic filters to revolutionize optical filtering applications. The approach leverages an innovative active material with electrically tunable permittivity, allowing for dynamic control over the filter's optical properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!