Photodegradation of 17β-estradiol on silica gel and natural soil by UV treatment.

Environ Pollut

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, PR China. Electronic address:

Published: November 2018

This paper evaluates the UV photodegradation of 17β-estradiol (E2) on silica gel and in natural soil with different soil components. Silica gel was chosen as a stable and pure support to simulate the photochemical behavior of E2 on the surface of natural soil. Ultraviolet light, rather than visible light, was confirmed to play a decisive role in the photodegradation of E2 on silica gel. The effect of three soil components, including humic acid (HA), inorganic salts, and relative humidity (RH), on the photochemical behavior of E2 on silica gel or soil under UV irradiation was then evaluated. Two HA concentrations (10 and 20 mg g) and three salts (ferric sulfate, copper sulfate and sodium carbonate) were observed to obviously inhibit the degradation of E2 on silica gel. Interestingly, nitrate was found to obviously improve the removal efficiency of E2. Both too-dry and too-wet conditions obviously reduced the removal rate of E2, and the optimum relative humidity (RH) value was found to be approximately about 35% (30 °C). Furthermore, twenty intermediate products and two major pathways were proposed to describe the transformation processes of E2 treated by UV irradiation, among which oligomers were found to be the major intermediate products before complete mineralization. The efficient UV removal of E2 on silica gel and natural soil suggested a feasible strategy to remediate E2 contaminated soil.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2018.08.018DOI Listing

Publication Analysis

Top Keywords

silica gel
28
natural soil
16
gel natural
12
photodegradation 17β-estradiol
8
17β-estradiol silica
8
soil
8
soil components
8
photochemical behavior
8
relative humidity
8
intermediate products
8

Similar Publications

Microfluidic-assisted sol-gel preparation of monodisperse mesoporous silica microspheres with controlled size, surface morphology, porosity and stiffness.

Nanoscale

January 2025

National Engineering Research Center for Colloidal Materials, School of Chemistry & Chemical Engineering, Shandong University, Jinan 250100, P. R. China.

The controllable synthesis of monodisperse mesoporous silica microspheres with unique physicochemical properties is becoming increasingly important for a variety of applications such as catalysts, chromatography, drug delivery and sensors. Here, we report a facile microfluidic-assisted sol-gel method for the preparation of silica microspheres with precisely controlled properties such as the size of the microspheres, the surface morphology, porosity and stiffness. All these properties can be manipulated by changing specific synthesis parameters, such as changing the microfluidic channels to tune the size of the microdroplets (tens to hundreds of microns), changing the contents of the precursor solution to manipulate the surface morphology (wrinkled to smooth surface) and changing the gelation/annealing conditions to tune the porosity (surface area up to 1021 m g) and stiffness of the microspheres (elastic modulus tunable from 0.

View Article and Find Full Text PDF

Sequential separation of anti-diabetic drugs in the presence of melamine as impurity using chromatographic methods.

BMC Chem

January 2025

Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University, Sharq El-Nile, Beni-Suef, 62511, Egypt.

The study of green analytical chemistry has garnered significant attention in the context of mitigating global environmental contamination. In this study, we present two methodologies for environmentally friendly chromatography that enable simultaneous and specific determination of Saxagliptin (SAX), metformin (MET), and a pharmacopoeial impurity of MET known as melamine (MEL). The initial method employed in this study is High-Performance Thin Layer Chromatography (HPTLC), which utilized 60 F 254 silica gel-coated Mark HPTLC plates on aluminum sheets as the stationary phase.

View Article and Find Full Text PDF

Background: Cutaneous hypertrophic scar is a fibro-proliferative hard-curing disease. Recent studies have proved that antagonists of angiotensin II type 1 receptor (ATR) and agonists of type 2 receptor (ATR) were able to relieve hypertrophic scar. Therefore, establishing new methods to pursue dual-target lead compounds from Chinese herbs is in much demand for treating scar.

View Article and Find Full Text PDF

Curcumin is a natural plant pigment that has been widely used in food production, drug development, and textile engineering. Gaining a deep understanding of the biological activities of curcumin and obtaining high-purity curcumin are of vital importance for basic research and applications of curcumin. In this review, we summarize recent advances in curcumin, mainly focusing on the methods of extracting and purifying curcumin from turmeric as well as applications based on biological activity.

View Article and Find Full Text PDF

The study aimed to develop a superhydrophobic coating on the aluminium alloy 2024-T3 surface. The desired surface roughness and low surface energy were achieved with SiO nanoparticles, synthesised via the Stöber method and modified with alkyl silane (AS) or perfluoroalkyl silane (FAS). To enhance particle adhesion to the alloy substrate, nanoparticles were incorporated into a hybrid sol-gel coating composed of tetraethyl orthosilicate, methyl methacrylate, and 3-methacryloxypropyl trimethoxysilane.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!