High density lipoproteins (HDL) are key components of reverse cholesterol transport pathway. HDL removes excessive cholesterol from peripheral cells, including macrophages, providing protection from cholesterol accumulation and conversion into foam cells, which is a key event in pathogenesis of atherosclerosis. The mechanism of cellular cholesterol efflux stimulation by HDL involves interaction with the ABCA1 lipid transporter and ensuing transfer of cholesterol to HDL particles. In this study, we looked for additional proteins contributing to HDL-dependent cholesterol efflux. Using RNAseq, we analyzed mRNAs induced by HDL in human monocyte-derived macrophages and identified three genes, fatty acid desaturase 1 (FADS1), insulin induced gene 1 (INSIG1), and the low-density lipoprotein receptor (LDLR), expression of which was significantly upregulated by HDL. We individually knocked down these genes in THP-1 cells using gene silencing by siRNA, and measured cellular cholesterol efflux to HDL. Knock down of FADS1 did not significantly change cholesterol efflux (p = 0.70), but knockdown of INSIG1 and LDLR resulted in highly significant reduction of the efflux to HDL (67% and 75% of control, respectively, p < 0.001). Importantly, the suppression of cholesterol efflux was independent of known effects of these genes on cellular cholesterol content, as cells were loaded with cholesterol using acetylated LDL. These results indicate that HDL particles stimulate expression of genes that enhance cellular cholesterol transfer to HDL.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6247801 | PMC |
http://dx.doi.org/10.1016/j.yexmp.2018.08.003 | DOI Listing |
Biosci Biotechnol Biochem
December 2024
R&D Division, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachioji, Tokyo 192-0919, Japan.
It is essential to remove cholesterol from the body to suppress atherosclerosis progression. ABCA1 and ABCG1 transport cholesterol in peripheral cells including macrophages and function in the formation of high-density lipoprotein (HDL). ABCG5/ABCG8 functions in the efflux of cholesterol from the body.
View Article and Find Full Text PDFProtein Kinase C - epsilon (PKCɛ) is involved in diverse cellular processes such as migration, growth, differentiation, and survival. Public geneset analysis of human atherosclerotic plaque tissue revealed that PKCɛ expression is inversely correlated with plaque size and vulnerability. Similarly, peritoneal macrophages (MØ) from hypercholesterolemic mice have significantly lower PKCɛ expression.
View Article and Find Full Text PDFBMC Biol
December 2024
Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290, Helsinki, Finland.
Background: Many members of the oxysterol-binding protein-related protein (ORP) family have been characterized in detail over the past decades, but the lipid transport and other functions of ORP7 still remain elusive. What is known about ORP7 points toward an endoplasmic reticulum and plasma membrane-localized protein, which also interacts with GABA type A receptor-associated protein like 2 (GABARAPL2) and unlipidated Microtubule-associated proteins 1A/1B light chain 3B (LC3B), suggesting a further autophagosomal/lysosomal association. Functional roles of ORP7 have been suggested in cholesterol efflux, hypercholesterolemia, and macroautophagy.
View Article and Find Full Text PDFSci Adv
December 2024
Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
Malaria, a devastating parasitic infection, is the leading cause of death in many developing countries. Unfortunately, the most deadliest causative agent of malaria, , has developed resistance to nearly all currently available antimalarial drugs. The Niemann-Pick type C1-related (PfNCR1) transporter has been identified as a druggable target, but its structure and detailed molecular mechanism are not yet available.
View Article and Find Full Text PDFJ Mater Chem B
December 2024
Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
Atherosclerosis (AS) is a lipid-driven chronic inflammatory disease characterized by the presence of numerous proinflammatory cytokines, massive reactive oxygen species (ROS) and excess lipids, which together result in an overall inflammatory positive feedback loop in the plaque focus. Due to its excellent enzyme-like activity in ROS scavenging and inflammation inhibition, as well as its photothermal effects in the lipid efflux ability of foam cells, Prussian blue (PB) has greater potential in preventing inflammatory factor loops for enhanced treatment of AS than traditional nanozymes. In this study, the multifunctional nanozyme BSA@PB/Cur was synthesized by self-assembly of bovine serum albumin (BSA) with PB and further encapsulation of the anti-inflammatory drug curcumin (Cur).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!