The electrodynamic response of organic spin liquids with highly frustrated triangular lattices has been measured in a wide energy range. While the overall optical spectra of these Mott insulators are governed by transitions between the Hubbard bands, distinct in-gap excitations can be identified at low temperatures and frequencies, which we attribute to the quantum-spin-liquid state. For the strongly correlated β^{'}-EtMe_{3}Sb[Pd(dmit)_{2}]_{2}, we discover enhanced conductivity below 175 cm^{-1}, comparable to the energy of the magnetic coupling J≈250 K. For ω→0, these low-frequency excitations vanish faster than the charge-carrier response subject to Mott-Hubbard correlations, resulting in a dome-shaped band peaked at 100 cm^{-1}. Possible relations to spinons, magnons, and disorder are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.121.056402 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!