We compute the hydrodynamic relaxation times τ_{π} and τ_{j} for hot QCD at next-to-leading order in the coupling with kinetic theory. We show that certain dimensionless ratios of second-order to first-order transport coefficients obey bounds which apply whenever a kinetic theory description is possible; the computed values lie somewhat above these bounds. Strongly coupled theories with holographic duals strongly violate these bounds, highlighting their distance from a quasiparticle description.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.121.052302 | DOI Listing |
Toxics
December 2024
Eco-Environment Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
The coexistence of microplastics and benzo[a]pyrene (BaP) in the environment, and their interactions within agricultural soils in particular, have garnered widespread attention. This study focused on the early-stage interactions between microplastics and BaP, aiming to uncover their initial adsorption mechanisms. Despite the significant environmental toxicity of both pollutants, research on their mutual interactions in soil is still limited.
View Article and Find Full Text PDFEntropy (Basel)
December 2024
Istituto Nazionale di Alta Matematica (INdAM), 00185 Rome, Italy.
The status of the Second Law of Thermodynamics, even in the 21st century, is not as certain as when Arthur Eddington wrote about it a hundred years ago. It is not only about the truth of this law, but rather about its strict and exhaustive formulation. In the previous article, it was shown that two of the three most famous thermodynamic formulations of the Second Law of Thermodynamics are non-exhaustive.
View Article and Find Full Text PDFEntropy (Basel)
December 2024
Steklov Mathematical Institute of Russian Academy of Sciences, Gubkina St. 8, Moscow 119991, Russia.
While there are many works on the applications of machine learning, not so many of them are trying to understand the theoretical justifications to explain their efficiency. In this work, overfitting control (or generalization property) in machine learning is explained using analogies from physics and biology. For stochastic gradient Langevin dynamics, we show that the Eyring formula of kinetic theory allows to control overfitting in the algorithmic stability approach-when wide minima of the risk function with low free energy correspond to low overfitting.
View Article and Find Full Text PDFEntropy (Basel)
December 2024
Institute for Physics, University of Greifswald, 17489 Greifswald, Germany.
We present the results from kinetic theory for a system of self-propelled particles with alignment interactions of higher-order symmetry, particularly nematic ones. To this end, we use the Landau equation approach, a systematic approximation to the BBGKY hierarchy for small effective couplings. Our calculations are presented in a pedagogical way with the explicit goal of serving as a tutorial from a physicists' perspective into applying kinetic theory ideas beyond mean-field to active matter systems with essentially no prerequisites and yield predictions without free parameters that are in quantitative agreement with direct agent-based simulations.
View Article and Find Full Text PDFEntropy (Basel)
November 2024
Niels Bohr Institute, University of Copenhagen, Jagtvej 155 A, DK-2200 Copenhagen N, Denmark.
This paper extends the concept of epitropy, as introduced in previous work, to capture the effects of extreme tail behavior arising naturally over very long time and large space scales. Epitropy has some qualities that parallel entropy, although it is not quite the same. Its function is to capture the effects of a probability distribution function (PDF) having only a finite populated domain, which was introduced to eliminate divergent moment integrals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!