Optical Coherent Reflection from a Confined Colloidal Film: Modeling and Experiment.

J Phys Chem B

Instituto de Física , Universidad Nacional Autónoma de México , Apartado Postal 20-364, Ciudad de México 01000 , Mexico.

Published: September 2018

We study the optical reflectivity of confined colloidal films as a function of the angle of incidence in an internal reflection configuration. Two effective medium models and an extended coherent-scattering model for thin colloidal films are compared against experimental measurements with gold, latex, and titanium dioxide colloids. A derivation of the coherent scattering model for confined colloidal films used in this work is presented in a comprehensive way. The model lies within the framework of the multiple-scattering theory and is valid for any angle of incidence and for colloids of small or large particles compared to the wavelength of light, however, only for small and moderately small particles' volume fraction. Reflectivity versus angle of incidence curves for an opaque colloidal film in an internal reflection configuration show the effects of two critical angles. Within the two critical angles, there is a high sensitivity to the presence of colloidal particles, while the volume of colloidal samples needed is in the microliter range. Upon comparing theory with experiment, no model fitting was done in any case. The experimental setup and its calibration procedure are discussed. The results provide physical insight into applications involving optical properties of colloidal systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.8b03751DOI Listing

Publication Analysis

Top Keywords

confined colloidal
12
colloidal films
12
angle incidence
12
colloidal
8
colloidal film
8
internal reflection
8
reflection configuration
8
critical angles
8
optical coherent
4
coherent reflection
4

Similar Publications

Nanoconfinement-induced shift in photooxidative degradation pathway of polystyrene.

J Colloid Interface Sci

December 2024

Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, United States. Electronic address:

Polymer nanocomposites with high concentrations of nanoparticles (NPs) possess exceptional mechanical, transport, and thermal properties. To enable their widespread use in structural applications and functional coatings, it is crucial to understand how nanoconfinement and the polymer-NP interface influence polymer degradation under various environmental conditions, including prolonged UV exposure. In this study, we investigate the photooxidative degradation of polystyrene (PS)-confined in the interstices of SiO NP films.

View Article and Find Full Text PDF

Accelerated arsenic decontamination using graphene oxide-supported metal-organic framework nanoconfined membrane for sustainable performance.

J Colloid Interface Sci

December 2024

Institute of Green Chemistry and Chemical Technology, Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Bioresource and Agriculture, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region. Electronic address:

Developing highly efficient bimetallic metal-organic frameworks (MOFs) as catalysts for Fenton-like reactions holds significant promise for decontamination processes. Although MOFs with excellent decontamination capabilities are achievable, ensuring their long-term stability, especially in the organoarsenic harmless treatment, remains a formidable challenge. Herein, we proposed a unique nanoconfinement strategy using graphene oxide (GO)-supported Prussian blue analogs (PBA) as catalytic membrane, which modulated the peroxymonosulfate (PMS) activation in p-arsanilic acid (p-ASA) degradation from traditional radical pathways to a synergy of both radical and non-radical pathways.

View Article and Find Full Text PDF

Bacterial cellulose/thiolated chitosan nanoparticles hybrid antimicrobial dressing for curcumin delivery.

Int J Biol Macromol

December 2024

'Materials+Technology' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018, Donostia-San Sebastián, Spain. Electronic address:

Thiolated chitosan (Cs-SH) nanoparticles were synthesized and incorporated into bacterial cellulose (BC) membranes through vacuum-assisted confinement. Thiolation significantly enhanced the intrinsic adhesion capacity of chitosan (Cs) as well as its solubility in neutral aqueous solutions. Subsequently, Cs-SH nanoparticles were successfully loaded with curcumin (Cur-Cs-SH), with nanoparticle sizes of 121 ± 2 nm for Cs-SH and 152 ± 6 nm for Cur-Cs-SH.

View Article and Find Full Text PDF

Biologically inspired bioactive hydrogels for scarless corneal repair.

Sci Adv

December 2024

Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, P. R. China.

Corneal injury-induced fibrosis occurs because of corneal epithelial basement membrane (EBM) injury and defective regeneration. Corneal fibrosis inhibition and transparency restoration depend on reestablished EBM, where the collagen network provides structural stability and heparan sulfate binds corneal epithelium-derived cytokines to regulate homeostasis. Inspired by this, bioactive hydrogels (Hep@Gel) composed of collagen-derived gelatins and highly anionic heparin were constructed for scarless corneal repair.

View Article and Find Full Text PDF

Pirquitasite AgZnSnS (AZTS) nanocrystals (NCs) are emergent, lead-free emissive materials in the coinage chalcogenide family with applications in optoelectronic technologies. Like many multinary nanomaterials, their phase-pure synthesis is complicated by the generation of impurities, e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!