Spectral-width broadening has many factors. Diode lasers are not always monochromatic due to several broadening mechanisms, widening the energy distribution of emitted photons. In this paper, we report the two main factors affecting time average spectral-width broadening of a laser diode array (LDA)-a transient rise of the active region temperature of an LDA due to injection current, and the temperature and stress nonuniform distribution of different emitters within an LDA. We find that temperature and stress nonuniformity broadens the spectral width by almost 0.1-1.0 nm as a function of different operating conditions, while the thermally induced chirp that is attributed to injection current plays a more signification role in spectral-width broadening.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.57.005599 | DOI Listing |
Phys Chem Chem Phys
December 2024
Research Group ESR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Germany.
F electron-nuclear double resonance (ENDOR) spectroscopy is emerging as a method of choice to determine molecular distances in biomolecules in the angstrom to nanometer range. However, line broadening mechanisms in F ENDOR spectra can obscure the detected spin-dipolar coupling that encodes the distance information, thus limiting the resolution and accessible distance range. So far, the origin of these mechanisms has not been understood.
View Article and Find Full Text PDFFilamentation of high-power femtosecond optical pulses in high-pressure gases has gained increasing academic and practical interest from the viewpoint of studying large-scale spectral and temporal transformations occurring with pulsed laser radiation and obtaining super-broadened spectra and extremely short (attosecond) wave packets. Experimentally and theoretically, for the first time to the best of our knowledge, we show that as a result of a 45 fs Ti:sapphire laser pulse filamentation in an optical cell filled with pressurized up to 50 bar nitrogen or argon, the pulse spectrum can reach maximally about eightfold broadening. This limiting pulse spectral width is reached at a gas pressure of about 20 bar and with further pressure increase exhibits saturation and even a slight decrease relative to the limiting value.
View Article and Find Full Text PDFJ Chem Phys
September 2024
James Franck Institute, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, USA.
Room temperature 6 μm intraband cascade electroluminescence (EL) is demonstrated with lightly n-doped HgTe colloidal quantum dots of ∼8 nm diameter deposited on interdigitated electrodes in a metal-insulator-metal device. With quantum dot films of ∼150 nm thickness made by solid-state-ligand-exchange, the devices emit at 1600 cm-1 (6.25 μm), with a spectral width of 200 cm-1, determined by the overlap of the 1Se-1Pe intraband transition of the quantum dots and the substrate photonic resonance.
View Article and Find Full Text PDFWe study the polarization-dependent laser performance of a novel, to the best of our knowledge, "mixed" Tm,Ho:CaYGdAlO crystal in the continuous-wave (CW) and mode-locked regimes. Both in terms of the CW tunability range (261 nm) and the minimum pulse duration (50 fs at 2078 nm, spectral width of 95 nm) in the mode-locked regime, σ-polarization is superior. With extended inhomogeneous spectral broadening due to structural and compositional disorder, Tm,Ho:CaYGdAlO is promising for few-optical-cycle pulse generation around 2 µm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!