A novel scaffold for the construction of self-organised ionic liquids and ionic liquid crystals bearing both perfluorocarbon and hydrocarbon moieties has been developed. The phase behaviour and physical properties of these materials can be tuned as a function of chain length and fluorine content and significant structural elaboration is possible, giving a highly flexible system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8cc04704a | DOI Listing |
EES Catal
December 2024
Department of Chemical Engineering, Delft University of Technology 2629 HZ Delft The Netherlands
Electrochemical CO reduction offers a promising method of converting renewable electrical energy into valuable hydrocarbon compounds vital to hard-to-abate sectors. Significant progress has been made on the lab scale, but scale-up demonstrations remain limited. Because of the low energy efficiency of CO reduction, we suspect that significant thermal gradients may develop in industrially relevant dimensions.
View Article and Find Full Text PDFDes Monomers Polym
January 2025
Leibniz-Institut für Polymerforschung Dresden e.V, Dresden, Germany.
Enhancing both ionic conductivity and mechanical robustness remains a major challenge in designing solid-state electrolytes for lithium batteries. This work presents a novel approach in designing mechanically robust and highly conductive solid-state electrolytes, which involves ionic liquid-based cross-linked polymer networks incorporating polymeric ionic liquids (PILs). First, linear PILs with different side groups were synthesized for optimizing the structure.
View Article and Find Full Text PDFACS Mater Au
January 2025
Department of Electrical and Electronic Engineering, Kyushu Institute of Technology, 1-1 Sensuicho, Tobataku, Kitakyushu, Fukuoka 804-8550, Japan.
Ionic gels (IGs), ionic liquids (ILs) dispersed in polymers, exhibit extremely low vapor pressure, electrochemical and thermal stability, and excellent mechanical characteristics; therefore, they are used for fabricating stretchable sensors, electrochemical transistors, and energy storage devices. Although such characteristics are promising for flexible and stretchable electronics, the mechanical stress-induced ruptured covalent bonds forming polymer networks cannot recover owing to the irreversible interaction between the bonds. Physical cross-linking via noncovalent bonds enables the interaction of polymers and ILs to form supramolecular IGs (SIGs), which exhibit favorable characteristics for wearable devices that conventional IGs with noncovalent bonds cannot achieve.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Physics, The Graduate Center of CUNY, New York, NY, USA.
There is increasing interest in studying molecular motions in ionic liquids to gain better insights into their transport properties and to expand their applications. In this study, we have employed the fast field cycling relaxometry and pulsed field gradient nuclear magnetic resonance techniques to investigate the rotational and translational dynamics of fluorinated imide-based ionic liquids (ILs) at different temperatures. We have studied a total of six ILs composed of the 1-butyl-3-methylimidazolium cation ([BMIM]) combined with chemically modified analogs of the bis((trifluoromethyl)sulfonyl)imide anion ([NTf] or [TFSI]).
View Article and Find Full Text PDFDalton Trans
January 2025
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
Silicon is utilized as a functional material in various fields such as semiconductors, bio-medicine, and solar energy. To prepare Si materials, researchers have proposed methods including carbothermal reduction, hydrothermal reduction, and magnesiothermal reduction, but these strategies often involve high temperatures or unwanted by-products. Herein, we present a low-temperature ionic liquid reduction system to prepare Si nanospheres based on 1-butyl-3-methylimidazolium chloride-aluminum chloride ([Bmim]Cl-AlCl).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!