Cyclic Penta-Twinned Rhodium Nanobranches as Superior Catalysts for Ethanol Electro-oxidation.

J Am Chem Soc

State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University, Xiamen 361005 , P. R. China.

Published: September 2018

Developing active and durable electro-catalysts toward ethanol oxidation reaction (EOR) with high selectivity toward the C-C bond cleavage is an important issue for the commercialization of direct ethanol fuel cell. Unfortunately, current ethanol oxidation electro-catalysts (e.g., Pt, Pd) still suffer from poor selectivity for direct oxidation of ethanol to CO, and rapid activity degradation. Here we report a facile route to the synthesis of a new kind of cyclic penta-twinned (CPT) Rh nanostructures that are self-supported nanobranches (NBs) built with 1-dimension CPT nanorods as subunits. Structurally, the as-prepared Rh NBs possess high percentage of open {100} facets with significant CPT-induced lattice strains. With these unique structural characteristics, the as-prepared CPT Rh NBs exhibit outstanding electrocatalytic performance toward EOR in alkaline solution. Most strikingly, the selectivity of complete conversion ethanol to CO on the CPT Rh NBs is measured to be as high as 14.5 ± 1.1% at -0.15 V, far exceeding that for single-crystal tetrahedral nanocrystals, icosahedral nanocrystals, and commercial Rh black, as well as majority of reported values for Pt or Pd-based electro-catalysts. By combining with density functional theory calculation, the effects of different structural features of Rh on EOR are definitively elucidated. It was found that the large amount of open Rh (100) facets dominantly contribute to the outstanding activity and exceptionally high selectivity, while the additional tensile strain on (100) planes can further boost the catalytic activity by enhancing the adsorption strength and lowering the reaction barrier of dehydrogenation process of ethanol. As a proof of concept, the present work shows that rationally optimizing surface and electronic structure of electro-catalysts by simultaneously engineering their surface and bulk structures is a promising strategy to promote the performance of electro-catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.8b03080DOI Listing

Publication Analysis

Top Keywords

cyclic penta-twinned
8
ethanol oxidation
8
high selectivity
8
cpt nbs
8
ethanol
7
electro-catalysts
5
penta-twinned rhodium
4
rhodium nanobranches
4
nanobranches superior
4
superior catalysts
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!