Int J Numer Method Biomed Eng
Department of Computer Applications in Science and Engineering, Barcelona Supercomputing Center (BSC), Barcelona, Spain.
Published: December 2018
In this work, we present a fully coupled fluid-electro-mechanical model of a 50th percentile human heart. The model is implemented on Alya, the BSC multi-physics parallel code, capable of running efficiently in supercomputers. Blood in the cardiac cavities is modeled by the incompressible Navier-Stokes equations and an arbitrary Lagrangian-Eulerian (ALE) scheme. Electrophysiology is modeled with a monodomain scheme and the O'Hara-Rudy cell model. Solid mechanics is modeled with a total Lagrangian formulation for discrete strains using the Holzapfel-Ogden cardiac tissue material model. The three problems are simultaneously and bidirectionally coupled through an electromechanical feedback and a fluid-structure interaction scheme. In this paper, we present the scheme in detail and propose it as a computational cardiac workbench.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cnm.3140 | DOI Listing |
ACS Nano
January 2025
IBM Almaden Research Center, San Jose 95120-6099, California, United States.
Controlling spin-polarized currents at the nanoscale is of immense importance for high-density magnetic data storage and spin-based logic devices. As electronic devices are miniaturized to the ultimate limit of individual atoms and molecules, electronic transport is strongly influenced by the properties of the individual spin centers and their magnetic interactions. In this work, we demonstrate the precise control and detection of spin-polarized currents through two coupled spin centers at a tunnel junction by controlling their spin-spin interactions.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China.
Background: Anthocyanin is an important class of water-soluble pigments that are widely distributed in various tissues of plants, and it not only facilitates diverse color changes but also plays important roles in various biological processes. Maize silk, serving as an important reproductive organ and displaying a diverse range of colors, plays an indispensable role in biotic resistance through its possession of anthocyanin. However, the copy numbers, characteristics, and expression patterns of genes involved in maize anthocyanin biosynthesis are not fully understood.
View Article and Find Full Text PDFNPJ Syst Biol Appl
January 2025
The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.
Genome-scale metabolic models (GSMM) are commonly used to identify gene deletion sets that result in growth coupling and pairing product formation with substrate utilization and can improve strain performance beyond levels typically accessible using traditional strain engineering approaches. However, sustainable feedstocks pose a challenge due to incomplete high-resolution metabolic data for non-canonical carbon sources required to curate GSMM and identify implementable designs. Here we address a four-gene deletion design in the Pseudomonas putida KT2440 strain for the lignin-derived non-sugar carbon source, p-coumarate (p-CA), that proved challenging to implement.
View Article and Find Full Text PDFComput Biol Med
January 2025
UCL Mechanical Engineering, University College London, UK; Ri.MED Foundation, Palermo, Italy; University of Palermo, Department of Engineering, Palermo, Italy. Electronic address:
Aortic valve replacements, both surgical and transcatheter, are nowadays widely employed treatments. Although clinically effective, these procedures are correlated with potentially severe clinical complications which can be associated with the non-physiological haemodynamics that they establish. In this work, the fluid dynamics changes produced by surgical and transcatheter aortic valve replacements are analysed and compared with an ideal healthy native valve configuration, employing advanced fluid-structure interaction (FSI) simulations.
View Article and Find Full Text PDFJ Vis Exp
December 2024
Department of Ophthalmology and Visual Neurosciences, University of Minnesota;
G protein-coupled receptors (GPCRs) are a superfamily of transmembrane proteins that initiate signaling cascades through activation of its G protein upon association with its ligand. In all mammalian vision, rhodopsin is the GPCR responsible for the initiation of the phototransduction cascade. Within photoreceptors, rhodopsin is bound to its chromophore 11-cis-retinal and is activated through the light-sensitive isomerization of 11-cis-retinal to all-trans-retinal, which activates the transducin G protein, resulting in the phototransduction cascade.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.