Zebrafish are increasingly used as a model for human cardiac electrophysiology, arrhythmias, and drug screening. However, K ion channels of the zebrafish heart, which determine the rate of repolarization and duration of cardiac action potential (AP) are still incompletely known and characterized. Here, we provide the first evidence for the presence of the slow component of the delayed rectifier Kchannels in the zebrafish heart and characterize electrophysiological properties of the slow component of the delayed rectifier Kcurrent, I. Zebrafish atrium and ventricle showed strong transcript expression of the kcnq1 gene, which encodes the Kv7.1 α-subunit of the slow delayed rectifier K channel. In contrast, the kcne1 gene, encoding the MinK β-subunit of the delayed rectifier, was expressed at 21 and 17 times lower level in ventricle and atrium, respectively, in comparison to the kcnq1. I was observed in 62% of ventricular myocytes with mean (± SEM) density of 1.23 ± 0.37 pA/pF at + 30 mV. Activation rate of I was 38% faster (τ = 1248 ± 215 ms) than kcnq1:kcne1 channels (1725 ± 792 ms) expressed in 3:1 ratio in Chinese hamster ovary cells. Microelectrode experiments demonstrated the functional relevance of I in the zebrafish heart, since 100 μM chromanol 293B produced a significant prolongation of AP in zebrafish ventricle. We conclude that AP repolarization in zebrafish ventricle is contributed by I, which is mainly generated by homotetrameric Kv7.1 channels not coupled to MinK ancillary β-subunits. This is a clear difference to the human heart, where MinK is an essential component of the slow delayed rectifier Kchannel.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00424-018-2193-1DOI Listing

Publication Analysis

Top Keywords

delayed rectifier
24
slow delayed
12
zebrafish heart
12
zebrafish
8
slow component
8
component delayed
8
zebrafish ventricle
8
delayed
6
rectifier
6
slow
5

Similar Publications

The rapid delayed-rectifier potassium current: a biophysical basis for cardiac repolarization and arrhythmia.

Nat Rev Cardiol

January 2025

Cardiovascular Research Laboratories, School of Physiology, Pharmacology & Neuroscience, Faculty of Health & Life Sciences, University of Bristol, Bristol, UK.

View Article and Find Full Text PDF

The extracellular matrix (ECM) stores signaling molecules and facilitates mechanical and biochemical signaling in cells. However, the influence of biomimetic "rejuvenation" ECM structures on aging- and degeneration-related cellular activities and tissue repair is not well understood. We combined physical extrusion and precise "on-off" alternating cross-linking methods to create anisotropic biomaterial microgels (MicroRod and MicroSphere) and explored how they regulate the cell activities of the nucleus pulposus (NP) and their potential antidegenerative effects on intervertebral discs.

View Article and Find Full Text PDF

Background: Pimozide is a conventional antipsychotic drug of the diphenylbutylpiperidine class, widely used for treating schizophrenia and delusional disorders and for managing motor and phonic tics in Tourette's syndrome. Pimozide is known to block dopaminergic D2 receptors and various types of voltage-gated ion channels. Among its side effects, dizziness and imbalance are the most frequently observed, which may imply an effect of the drug on the vestibular sensory receptors, the hair cells.

View Article and Find Full Text PDF

Background: Long QT Syndrome Type-2 (LQT2) is due to loss-of-function variants. encodes K 11.1 that forms a delayed-rectifier potassium channel in the brain and heart.

View Article and Find Full Text PDF

Obesity is associated with abnormal repolarization manifested by QT interval prolongation, and oxidative stress is an important link between obesity and arrhythmias. However, the underlying electrophysiological and molecular mechanisms remain unclear. The aim of this study is to evaluate the role of obesity in potassium current in ventricular myocytes and the potential mechanism of NADPH oxidase 2 (Nox2).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!