Spinal muscular atrophy (SMA) is a degenerative disorder that selectively deteriorates motor neurons due to a deficiency of survival motor neuron protein (SMN). The illness is the leading genetic cause of death in infants and is difficult to study in complex biological systems such as humans. A simpler model system, such as the nematode C. elegans, can be used to study potential mechanisms underlying this disease; C. elegans expresses the smn-1 gene, a homologue of SMN; powerful genetic tools in C. elegans research can be used to discover novel genes whose effect on SMN remains unknown or uncharacterized. Currently, conventional screening methods are time-consuming and laborious, as well as being subjective and mostly qualitative. To address these issues, we engineer an automated system capable of performing genetic suppressor screens on C. elegans using microfluidics in combination with custom image analysis software. We demonstrate the utility of this system by isolating 21 alleles that significantly suppress motor neuron degeneration at a screening rate of approximately 300 worms per hour. Many of these mutants also have improved motor function. These isolated alleles can potentially be further studied to understand mechanisms of protection against neurodegeneration. Our system is easily adaptable, providing a means to saturate screens not only implicated in the smn-1 pathway, but also for genes involved in other neurodegenerative phenotypes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6193809 | PMC |
http://dx.doi.org/10.1039/c8ib00091c | DOI Listing |
Stroke
January 2025
Department of Clinical Neuroscience and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan (M.T., T.N., S.A., H.M.).
Background: Synthetic magnetic resonance imaging (MRI) is an innovative MRI technology that enables the acquisition of multiple quantitative values, including T1 and T2 values, proton density, and myelin volume, in a single scan. Although the usefulness of myelin measurement with synthetic MRI has been reported for assessing several diseases, investigations in patients with stroke have not been reported. We aimed to explore the utility of myelin quantification using synthetic MRI in predicting outcomes in patients with acute ischemic stroke.
View Article and Find Full Text PDFNew Phytol
January 2025
Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark.
Lupins are promising protein crops that accumulate toxic quinolizidine alkaloids (QAs) in the seeds, complicating their end-use. QAs are synthesized in green organs (leaves, stems, and pods) and a subset of them is transported to the seeds during fruit development. The exact sites of biosynthesis and accumulation remain unknown; however, mesophyll cells have been proposed as sources, and epidermal cells as sinks.
View Article and Find Full Text PDFHeliyon
January 2025
BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Australia.
Breast-conserving surgery accompanied by adjuvant radiotherapy is the standard of care for patients with early-stage breast cancer. However, re-excision is reported in 20-30 % of cases, largely because of close or involved tumor margins in the specimen. Several intraoperative tumor margin assessment techniques have been proposed to overcome this issue, however, none have been widely adopted.
View Article and Find Full Text PDFHeliyon
January 2025
Programa de Pós-Graduação em Medicina Veterinária - Clínica e Reprodução Animal, Universidade Federal Fluminense, Niterói, RJ, Brazil.
Feline primary bone tumors are rare. Still, osteosarcoma (OSA) composes almost 80 % of malignant bone tumors in cats, affecting mostly elder feline individuals. Many differences are observed between canine and feline OSA regarding radiographic image and tumoral behavior, especially metastasis development.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Nanotechnology, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran.
This study details the synthesis of a novel ternary nanocomposite composed of MnFeO, FeVO, and modified zeolite, achieved through a two-step process. The initial step involved the hydrothermal synthesis of the MnFeO/FeVO composite, followed by its application onto modified zeolite using ultrasonic waves. The synthesized nanocomposite was thoroughly characterized using a range of analytical techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!