Herein, the ECL behaviors of precise mono-Cu+ ion doped Cd-In-S supertetrahedral chalcogenide nanoclusters (Cu@CdInS NCs) were investigated, and the effect of mono-Cu+ ions at the vacancy site of NCs on ECL emission performance was also elucidated. Precise mono-Cu+ ion doping not only induced new ECL emission at 596 nm with enhanced efficiency as high as 21.72% relative to [Ru(bpy)3]2+, but also improved acid tolerance of the ECL performances of NCs. In addition, a simple, fast and label-free dopamine ECL sensor with excellent selectivity was achieved.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8nr05046eDOI Listing

Publication Analysis

Top Keywords

ion doping
8
cd-in-s supertetrahedral
8
supertetrahedral chalcogenide
8
chalcogenide nanoclusters
8
precise mono-cu+
8
mono-cu+ ion
8
ecl emission
8
ecl
5
precise mono-cu
4
mono-cu ion
4

Similar Publications

In-situ conversion of BiOBr to Br-doped BiOCl nanosheets for "rocking chair" zinc-ion battery.

J Colloid Interface Sci

January 2025

School of Mechanical Engineering and Mechanics, School of Chemistry, Xiangtan University, Xiangtan 411105 PR China. Electronic address:

Developing insertion-type anodes is essential for designing high-performance "rocking chair" zinc-ion batteries. BiOCl shows great potential as an insertion-type anode material for Zn storage due to its high specific capacity and unique layered structure. However, the development of BiOCl has been significantly hampered by its poor stability and kinetics during cycling.

View Article and Find Full Text PDF

In-situ engineering of centralized mesopores and edge nitrogen for porous carbons toward zinc ion hybrid capacitors.

J Colloid Interface Sci

January 2025

School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University (GXU), 100 Daxuedong Road, Xixiangtang District, Nanning 530004 China. Electronic address:

Porous carbons with large surface area (>3000 m/g) and heteroatom dopants have shown great promise as electrode materials for zinc ion hybrid capacitors. Centralized mesopores are effective to accelerate kinetics, and edge nitrogen can efficiently enhance pseudocapacitive capability. It is a great challenge to engineer centralized mesopores and edge nitrogen in large-surface-area porous carbons.

View Article and Find Full Text PDF

Nanoparticle-Doped Antibacterial and Antifungal Coatings.

Polymers (Basel)

January 2025

Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.

Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs.

View Article and Find Full Text PDF

Niobium pentoxide (T-NbO) is a promising anode material for dual-ion batteries due to its high lithium capacity and fast ion storage and release mechanism. However, T-NbO suffers from the disadvantages of poor electrical conductivity and fast cycling capacity decay. Herein, a nitrogen-doped three-dimensional porous carbon (RMF) was prepared for loading niobium pentoxide to construct a composite system with excellent electrochemical performance.

View Article and Find Full Text PDF

Design and Study of a Novel P-Type Junctionless FET for High Performance of CMOS Inverter.

Micromachines (Basel)

January 2025

State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China.

In this paper, a novel p-type junctionless field effect transistor (PJLFET) based on a partially depleted silicon-on-insulator (PD-SOI) is proposed and investigated. The novel PJLFET integrates a buried N+-doped layer under the channel to enable the device to be turned off, leading to a special work mechanism and optimized performance. Simulation results show that the proposed PJLFET demonstrates an I/I ratio of more than seven orders of magnitude, with I reaching up to 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!