A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Impacts of forests on children's diet in rural areas across 27 developing countries. | LitMetric

Micronutrient deficiency affects about a third of the world's population. Children in developing countries are particularly vulnerable. Consequences include impaired cognitive and physical development and increased childhood morbidity and mortality. Recent studies suggest that forests help alleviate micronutrient deficiency by increasing dietary diversity. However, evidence is mostly based on weakly designed local case studies of limited relevance to global policies. Furthermore, impacts of forests on diet vary among communities, and understanding this variation can help target actions to enhance impact. We compile data on children's diets in over 43,000 households across 27 developing countries to examine the impacts of forests on dietary diversity. We use empirical designs that are attentive to assumptions necessary for causal interpretations and that adequately account for confounding factors that could mask or mimic the impact. We find that high exposure to forests causes children to have at least 25% greater dietary diversity compared to lack of exposure, a result comparable to the impacts of some nutrition-sensitive agricultural programs. A closer look at a subset of African countries indicates that impacts are generally higher for less developed communities, but highest with certain access to markets, roads, and education. Our results also indicate that forests could help reduce vitamin A and iron deficiencies. Our study establishes the causal relationship between forests and diet and thus strengthens the evidence for integrating forest conservation and management into nutrition interventions. Our results also suggest that providing households some access to capital can increase the impact of forest-related interventions on nutrition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6093622PMC
http://dx.doi.org/10.1126/sciadv.aat2853DOI Listing

Publication Analysis

Top Keywords

impacts forests
12
developing countries
12
dietary diversity
12
micronutrient deficiency
8
forests help
8
forests diet
8
forests
6
impacts
5
forests children's
4
children's diet
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!