In order to obtain a non-toxic amphiphilic calixresorcinarene capable to form nanoconjugates for drug encapsulation, tetraundecylcalixresorcinarene functionalized by methoxy poly(ethylene glycol) chains has been synthesized. The macrocycle obtained is characterized by low hemotoxicity. In aqueous solution it forms nanoassociates that are able to encapsulate organic substrates of different hydrophobicity, including drugs (doxorubicin, naproxen, ibuprofen, quercetin). The micelles of the macrocycle slowed down the release of the hydrophilic substrates in vitro. In physiological sodium chloride solution and phosphate-buffered saline, the micelles of the macrocycle acquire thermoresponsive properties and exhibit a temperature-controlled release of doxorubicin in vitro. The combination of the low toxicity and the encapsulation properties of the obtained calixresorcinarene-mPEG conjugate shows promising potential for the use as a supramolecular drug-delivery system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6071701PMC
http://dx.doi.org/10.3762/bjnano.9.195DOI Listing

Publication Analysis

Top Keywords

methoxy polyethylene
8
polyethylene glycol
8
drug encapsulation
8
micelles macrocycle
8
nanoconjugates calixresorcinarene
4
calixresorcinarene derivative
4
derivative methoxy
4
glycol fragments
4
fragments drug
4
encapsulation order
4

Similar Publications

Targeted internalization and activation of glycosidic switch liposomes by a biological macromolecule mPEG×EphA2 increases therapeutic efficacy against lung cancer.

Int J Biol Macromol

January 2025

Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. Electronic address:

Glycosidic switch liposome (GSL) technology efficiently encapsulates and stabilizes potent anticancer drugs in liposomes using a reversible glucuronide ester. Enzymatic hydrolysis of the glucuronide switch in target cell lysosomes produces parental drug. Our study examined the potential of a bispecific macromolecule, a polyethylene glycol (PEG) engager (mPEG×EphA2), generated by fusing a humanized anti-methoxy PEG (mPEG) Fab with an anti-EphA2 single-chain antibody, to increase GSL uptake into cancer cells and boost the anticancer activity by targeting PEG on GSL and an internalizing tumor antigen.

View Article and Find Full Text PDF

Zwitterionic Poly(ethylene glycol) Nanoparticles Minimize Protein Adsorption and Immunogenicity for Improved Biological Fate.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.

We report the assembly of poly(ethylene glycol) nanoparticles (PEG NPs) and optimize their surface chemistry to minimize the formation of protein coronas and immunogenicity for improved biodistribution. PEG NPs cross-linked with disulfide bonds are synthesized utilizing zeolitic imidazolate framework-8 NPs as the templates, which are subsequently modified with PEG molecules with different end groups (carboxyl, methoxy, or amino) to vary the surface chemistry. Among the modifications, the amino and residual carboxyl groups form a pair of zwitterionic structures on the surface of PEG NPs, which minimize the adsorption of proteins (e.

View Article and Find Full Text PDF

Unraveling the in vivo pharmacokinetic behavior of mPEG-NH polymer in rats by UHPLC-MS/MS assay.

J Chromatogr B Analyt Technol Biomed Life Sci

January 2025

School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, Liaoning, 124221, China. Electronic address:

As an important chemical reagent, methoxy polyethylene glycol amine (mPEG-NH) is widely used in biomedical field. Unraveling the pharmacokinetic behavior of mPEG-NH polymers is essential for revealing the toxicity and efficiency of mPEG-NH related drug delivery systems. In this study, a simple analytical assay based on mass spectrometry (MS) was first established and validated for quantification of mPEG-NH in biological matrix.

View Article and Find Full Text PDF

Probing Ligand-Induced Conformational Changes in an MFS Transporter in vivo Using Site-Directed PEGylation.

J Mol Biol

January 2025

Department of Chemistry and Biochemistry, California State University, San Bernardino, 5500 University Pkwy, San Bernardino, CA 92407, USA. Electronic address:

So far, site-directed alkylation (SDA) studies on transporters in the Major Facilitator Superfamily (MFS) are mostly performed at conditions different from the native cellular environment. In this study, using GFP-based site-directed PEGylation, ligand-induced conformational changes in the lactose permease of Escherichia coli (LacY), were examined in vivo for the first time. Accessibility/reactivity of single-Cys replacements in a Cys-less LacY-eGFP fusion background was tested using methoxy polyethylene glycol-maleimide-5K (mPEG-Mal-5K) in the absence or presence of a ligand, and the band-shift of the fusion upon PEGylation was detected by in-gel fluorescence.

View Article and Find Full Text PDF

Integrin αvβ3, a primary cell-adhesion receptor, plays a crucial role in various biological processes, including angiogenesis, pathological neovascularization, and tumor metastasis. Its expression increases during tumor angiogenesis. The insulin-like growth factor 1 receptor (IGF1R) is a transmembrane protein that stimulates vital signaling pathways, promoting cancer cell growth, survival, and metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!