Polysaccharides have key biological functions and can be harnessed for therapeutic roles, such as the anticoagulant heparin. Their complexity-e.g., >100 monosaccharides with variety in linkage and branching structure-significantly complicates analysis compared to other biopolymers such as DNA and proteins. More, and improved, analysis tools have been called for, and here we demonstrate that solid-state silicon nitride nanopore sensors and tuned sensing conditions can be used to reliably detect native polysaccharides and enzymatic digestion products, differentiate between different polysaccharides in straightforward assays, provide new experimental insights into nanopore electrokinetics, and uncover polysaccharide properties. We show that nanopore sensing allows us to easily differentiate between a clinical heparin sample and one spiked with the contaminant that caused deaths in 2008 when its presence went undetected by conventional assays. The work reported here lays a foundation to further explore polysaccharide characterization and develop assays using thin-film solid-state nanopore sensors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6095881PMC
http://dx.doi.org/10.1038/s41467-018-05751-yDOI Listing

Publication Analysis

Top Keywords

silicon nitride
8
nanopore sensors
8
surveying silicon
4
nitride nanopores
4
nanopores glycomics
4
glycomics heparin
4
heparin quality
4
quality assurance
4
assurance polysaccharides
4
polysaccharides key
4

Similar Publications

Nanosecond Nanothermometry in an Electron Microscope.

Nano Lett

January 2025

University Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France.

Thermal transport in nanostructures plays a critical role in modern technologies. As devices shrink, techniques that can measure thermal properties at nanometer and nanosecond scales are increasingly needed to capture transient, out-of-equilibrium phenomena. We present a novel pump-probe photon-electron method within a scanning transmission electron microscope (STEM) to map temperature dynamics with unprecedented spatial and temporal resolutions.

View Article and Find Full Text PDF

We present both experimental and simulation results for a fully etched, C-band GC fabricated in an 800 nm silicon nitride platform that significantly reduces backreflections. They are minimized by truncating the initial grates, which deflect reflected light at an oblique angle and excite higher-order modes in the tapered waveguide that is filtered out. Insertion losses resulting from this modification of the grating coupler are mitigated by an adaptive redesign of the grates that corrects incurred errors in the generated phase front.

View Article and Find Full Text PDF

Inverse design with topology optimization considers a promising methodology for discovering new optimized photonic structure that enables to break the limitations of the forward or the traditional design especially for the meta-structure. This work presents a high efficiency mid infra-red imaging photonics element along mid infra-red wavelengths band starts from 2 to 5 µm based on silicon nitride optimized material structures. The first two designs are broadband focusing and reflective meta-lens under very high numerical aperture condition (NA = 0.

View Article and Find Full Text PDF

Extracorporeal Membrane Oxygenation (ECMO) serves as a crucial intervention for patients with severe pulmonary dysfunction by facilitating oxygenation and carbon dioxide removal. While traditional ECMO systems are effective, their large priming volumes and significant blood-contacting surface areas can lead to complications, particularly in neonates and pediatric patients. Microfluidic ECMO systems offer a promising alternative by miniaturizing the ECMO technology, reducing blood volume requirements, and minimizing device surface area to improve safety and efficiency.

View Article and Find Full Text PDF
Article Synopsis
  • The ionic conductance in charged nanopores exhibits a power-law behavior at low salinity, influenced by surface charges that affect zeta potential and ion distributions.
  • Accurately measuring surface charge density in single-digit nanopores poses challenges, leading researchers to develop new methodologies to investigate these effects.
  • Through experiments with silicon nitride nanopores, a modified conductance model was established to analyze the relationship between pore concentration, surface charges, and potential leakage, allowing for a better understanding of ion mobility in nanopores.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!