A study of the relationship between meniscal injury and bone microarchitecture in ACL reconstructed knees.

Knee

Department of Radiology, Cumming School of Medicine, University of Calgary, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Canada. Electronic address:

Published: October 2018

Background: Anterior cruciate ligament (ACL) tears increase the risk of developing knee osteoarthritis. This risk increases further with concurrent meniscus injury. The role of bone changes during knee osteoarthritis development are not well-understood, but may be important to its etiology.

Purpose: To explore the effects of ACL tears on bone mineral density (BMD) and bone microarchitecture at five years post-op and their relationship to meniscal pathology, using high-resolution peripheral quantitative computed tomography (HR-pQCT).

Methods: Twenty-eight participants with unilateral ACL reconstructions five years prior and no evidence of clinical or radiographic osteoarthritis were recruited. All participants represented one of three meniscus statuses: meniscus intact, meniscus repair, or meniscectomy. BMD and bone microarchitecture of the subchondral bone plate and adjacent trabecular bone were assessed using HR-pQCT, and percent-differences between the injured and contralateral knee were determined.

Results: Subchondral bone plate thickness in the lateral femoral condyle was higher in the reconstructed knee (9.0%, p = 0.002), driven by the meniscus repair and meniscectomy groups (15.2% to 15.4%, p < 0.05). Trabecular BMD was lower in the reconstructed knee in the medial femoral condyle (-4.8% to -7.6%, p < 0.05), driven by all meniscus statuses. In the lateral compartments, few differences in trabecular bone were found. However, accounting for meniscus status, the meniscus intact group had lower trabecular BMD throughout both femur and tibia.

Conclusions: Five years post-op, reconstructed knees demonstrated detectable differences in BMD and bone microarchitecture, despite having normal radiographs. Meniscus damage affected primarily the lateral compartment, warranting further investigation to determine if these changes relate to osteoarthritis development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.knee.2018.07.004DOI Listing

Publication Analysis

Top Keywords

bone microarchitecture
12
relationship meniscal
8
bone
8
acl tears
8
knee osteoarthritis
8
bmd bone
8
meniscus repair
8
repair meniscectomy
8
subchondral bone
8
bone plate
8

Similar Publications

Obesity is a major public health issue worldwide. Despite various approaches to weight loss, the most effective technique for reducing obesity, as well as diabetes and associated diseases, is bariatric surgery. Increasingly, young women without children are undergoing bariatric surgery, vertical sleeve gastrectomy (VSG) being the most common procedure nowadays.

View Article and Find Full Text PDF

Long-Term Natural Hydroxyapatite and Synthetic Collagen Hydroxyapatite Enhance Bone Regeneration and Implant Fixation Similar to Allograft in a Sheep Model of Implant Integration.

Calcif Tissue Int

January 2025

Orthopaedic Research Laboratory, Department of Orthopedic Surgery and Traumatology, Odense University Hospital & Department of Clinical Research, University of Southern Denmark, V18-812B-1, Etage 1, Bygning 45.4, Nyt Sund, SDU Campus 5230, Odense, Denmark.

There is an increasing demand for a suitable bone substitute to replace current clinical gold standard autografts or allografts. Majority of previous studies have focused on the early effects of substitutes on bone formation, while information on their long-term efficacies remains limited. This study investigated the efficacies of natural hydroxyapatite (nHA) derived from oyster shells and synthetic hydroxyapatite mixed with collagen (COL/HA) or chitosan (CS/HA) on bone regeneration and implant fixation in sheep.

View Article and Find Full Text PDF
Article Synopsis
  • Obesity can lead to systemic inflammation and insulin resistance, increasing the risk of type 2 diabetes (T2D) and negatively impacting bone health, with unclear differences in effects between obesity and T2D.
  • The study aimed to investigate how hyperinsulinemic obesity and insulinopenic T2D affect bone structure and bone marrow adipose tissue (BMAT), while also exploring the relationship with CRAMP expression and levels.
  • Mice fed a high-fat diet exhibited significant weight gain and bone deterioration, while those with insulinopenic T2D showed severe glucose intolerance and less BMAT expansion, indicating differing impacts on bone health between the conditions.
View Article and Find Full Text PDF

Background: Cancellous bone mechanical properties are directly linked to structural integrity, which is a result of bone quantity, the quality of its bone matrix, and its microarchitecture. Several studies highlighted the bone behavior under specific loads, contributing to understanding risk factors and developing more effective therapeutic strategies. The anatomy and stability of iliac bone fractures, providing insight into pelvic trauma management.

View Article and Find Full Text PDF

miR-468-3p suppresses osteogenic differentiation of BMSCs by targeting Runx2 and inhibits bone formation.

J Orthop Surg Res

December 2024

Department of Cardiology, Qingdao Municipal Hospital, 1 Jiaozhou Road, Qingdao, Shandong, 266000, China.

An improved understanding of the molecular actions underpinning bone marrow mesenchymal stem cell (BMSC) differentiation could highlight new therapeutics for osteoporosis (OP). Current evidence indicates that microRNAs (miRNAs) exert critical roles in many biological systems, including osteoblast differentiation. In this study, we examined miR-468-3p effects on osteogenic differentiation (OD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!