No Parkin Zone: Mitophagy without Parkin.

Trends Cell Biol

Université Côte d'Azur, INSERM, C3M, Nice, France; INSERM U1065, Équipe 3, 151 Route de Ginestière, BP 23194, 06204 Nice Cedex 03, France. Electronic address:

Published: November 2018

Mitochondria are essential highly dynamic organelles that provide the necessary energy for a variety of different processes, such as survival, proliferation, and migration. In order to maintain an intact mitochondrial network, cells have developed quality control systems that allow the removal of damaged or superfluous mitochondria by selective mitochondrial autophagy called mitophagy. Although the parkin/PINK1 axis is often considered the main regulator of mitophagy, a growing body of evidence has shown that this pathway is not unique and that mitophagy can still be functional in the absence of parkin. Here, we will review recent literature describing parkin-independent mitophagy and its role in various physiopathological conditions, therefore representing potential new targets to treat diseases affected by dysregulated mitophagy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tcb.2018.07.004DOI Listing

Publication Analysis

Top Keywords

mitophagy
6
parkin zone
4
zone mitophagy
4
mitophagy parkin
4
parkin mitochondria
4
mitochondria essential
4
essential highly
4
highly dynamic
4
dynamic organelles
4
organelles provide
4

Similar Publications

The interconnective role of the UPS and autophagy in the quality control of cancer mitochondria.

Cell Mol Life Sci

January 2025

State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.

Uncontrollable cancer cell growth is characterized by the maintenance of cellular homeostasis through the continuous accumulation of misfolded proteins and damaged organelles. This review delineates the roles of two complementary and synergistic degradation systems, the ubiquitin-proteasome system (UPS) and the autophagy-lysosome system, in the degradation of misfolded proteins and damaged organelles for intracellular recycling. We emphasize the interconnected decision-making processes of degradation systems in maintaining cellular homeostasis, such as the biophysical state of substrates, receptor oligomerization potentials (e.

View Article and Find Full Text PDF

Deapioplatycodin D (DPD) is a triterpenoid saponin natural compound isolated from the Chinese herb Platycodon grandiflorum that has antiviral and antitumor properties. This study aimed to investigate the effects of DPD on glioblastoma (GBM) cells and to determine its intrinsic mechanism of action. Using a CCK8 assay, it was found that DPD significantly inhibited the growth of GBM cells.

View Article and Find Full Text PDF

Mitophagy that disrupt mitochondrial membrane potential (MMP), represents a critical focus in pharmacology. However, the discovery and evaluation of MMP-disrupting drugs are often hampered using commercially available marker molecules that target similar or identical zones. These markers can significantly interfere with, obscure, or amplify the functional effects of MMP-targeting drugs, frequently leading to clinical failures.

View Article and Find Full Text PDF

Pym-18a, a novel pyrimidine derivative ameliorates glucocorticoid induced osteoblast apoptosis and promotes osteogenesis via autophagy and PINK 1/Parkin mediated mitophagy induction.

Biochem Pharmacol

January 2025

Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India. Electronic address:

Glucocorticoid-induced osteoporosis (GIOP) is the most common type of secondary osteoporosis, marked by reduced bone density and impaired osteoblast function. Current treatments have serious side effects, highlighting the need for new drug candidates. Pyrimidine derivatives have been noted for their potential in suppressing osteoclastogenesis, but their effects on osteogenesis and GIOP remain underexplored.

View Article and Find Full Text PDF

Mitophagy, the selective degradation of mitochondria by autophagy, plays a crucial role in cancer progression and therapy response. This study aims to elucidate the role of mitophagy-related genes (MRGs) in cutaneous melanoma (CM) through single-cell RNA sequencing (scRNA-seq) and machine learning approaches, ultimately developing a predictive model for patient prognosis. The scRNA-seq data, bulk transcriptomic data, and clinical data of CM were obtained from publicly available databases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!