Objectives: Perivascular adipose tissue (PVAT) is currently seen as a paracrine organ that produces vasoactive substances, including inflammatory agents, which may have an impact on the vasculature. In this study PVAT density was quantified in patients with an aortic aneurysm and compared with those with a non-dilated aorta. Since chronic inflammation, as the pathway to medial thinning, is a hallmark of abdominal aortic aneurysms (AAAs), it was hypothesised that PVAT density is higher in AAA patients.

Methods: In this multicentre retrospective case control study, three groups of patients were included: non-treated asymptomatic AAA (n = 140), aortoiliac occlusive disease (AIOD) (n = 104), and individuals without aortic pathology (n = 97). A Hounsfield units based analysis was performed by computed tomography (CT). As a proxy for PVAT, the density of adipose tissue 10 mm circumferential to the infrarenal aorta was analysed in each consecutive CT slice. Intra-individual PVAT differences were reported as the difference in PVAT density between the region of the maximum AAA diameter (or the mid-aortic region in patients with AIOD or controls) and the two uppermost slices of infrarenal non-dilated aorta just below the renal arteries. Furthermore, subcutaneous (SAT) and visceral (VAT) adipose tissue measurements were performed. Linear models were fitted to assess the association between the study groups, different adipose tissue compartments, and between adipose tissue compartments and aortic dimensions.

Results: AAA patients presented higher intra-individual PVAT differences, with higher PVAT density around the aneurysm sac than the healthy neck. This association persisted after adjustment for cardiovascular risk factors and diseases and other fat compartments (β = 13.175, SE 4.732, p = .006). Furthermore, intra-individual PVAT differences presented the highest correlation with aortic volume that persisted after adjustment for other fat compartments, body mass index, sex, and age (β = 0.566, 0.200, p = .005).

Conclusion: The results suggest a relation between the deposition of PVAT and AAA pathophysiology. Further research should explore the exact underlying processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejvs.2018.07.008DOI Listing

Publication Analysis

Top Keywords

adipose tissue
24
pvat density
20
intra-individual pvat
12
pvat differences
12
pvat
10
abdominal aortic
8
aortic aneurysm
8
non-dilated aorta
8
tissue compartments
8
persisted adjustment
8

Similar Publications

Chronic low-dose REV-ERBs agonist SR9009 mitigates constant light-induced weight gain and insulin resistance via adipogenesis modulation.

Biomed J

January 2025

Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan. Electronic address:

Background: Obesity and circadian rhythm disruption are significant global health concerns, contributing to an increased risk of metabolic disorders. Both adipose tissue and circadian rhythms play critical roles in maintaining energy homeostasis, and their dysfunction is closely linked to obesity. This study aimed to assess the effects of chronic low-dose SR9009, a REV-ERB ligand, on circadian disruption induced by constant light exposure in mice.

View Article and Find Full Text PDF

Nocardiosis in domestic ferrets (Mustela putorius furo).

J Comp Pathol

January 2025

Histologia i Anatomia Patològica, Facultat de Veterinària (UAB), 08193 Bellaterra (Barcelona), Spain.

Nocardia spp are ubiquitous, gram-positive, variably acid-fast, branching and beaded filamentous, facultative intracellular bacteria that are resistant to phagocytosis and can cause localized or systemic disease in a variety of mammals, including humans, as well as in birds, fish and reptiles. Seventeen pet domestic ferrets (Mustela putorius furo) were diagnosed with nocardiosis by several methods including cytological evaluation, histopathology, Ziehl-Neelsen staining and polymerase chain reaction (PCR). All except two ferrets were 2 years old or older at the time of clinical presentation.

View Article and Find Full Text PDF

4-hydroxybenzoic acid induces browning of white adipose tissue through the AMPK-DRP1 pathway in HFD-induced obese mice.

Phytomedicine

December 2024

Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 02447, Seoul, South Korea; Department of Pharmacology, College of Korean Medicine, Kyung Hee University, 02447, Seoul, South Korea; Kyung Hee Institute of Convergence Korean Medicine, Kyung Hee University, 02447, Seoul, South Korea. Electronic address:

Background: Beige adipocytes have physiological functions similar to brown adipocytes, which are available to increase energy expenditure through uncoupling protein 1 (UCP1) within mitochondria. Recently, many studies showed white adipocytes can undergo remodeling into beige adipocytes, called "browning", by increasing fusion and fission events referred to as mitochondrial dynamics.

Purpose: In this study, we aimed to investigate the browning effects of 4-hydroxybenzoic acid (4-HA), one of the major compounds of black raspberries.

View Article and Find Full Text PDF

Compound K promotes thermogenic signature and mitochondrial biogenesis via the UCP1-SIRT3-PGC1α signaling pathway.

Biomed Pharmacother

January 2025

Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Jeollabuk-do 54907, South Korea. Electronic address:

Compound K (CK), an active ingredient in ginseng, has anti-cancer, anti-inflammatory, and antioxidant properties. However, its effects on thermogenesis and mitochondrial dynamics in white adipose tissue (WAT) adipocytes are not well understood. This study explores CK's impact on thermogenesis and mitochondrial metabolism in cold-exposed mice and mouse stromal vascular fraction (SVF) cells.

View Article and Find Full Text PDF

Resinacein S ameliorates the obesity in mice via activating the brown adipose tissue.

Pak J Pharm Sci

January 2025

Department of Endocrinology, Gongli Hospital of Shanghai Pudong New Area, School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, Shanghai, China.

Brown adipose tissue (BAT) is an ideal target organ for obesity treatment. Resinacein S is extracted from Ganoderma lucidum and can elevate Uncoupling protein 1 (UCP1) in cells, but its related effects at the animal level are not clear. The mice were fed with high-fat diet to construct obesity models and treated with Resinacein S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!