A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Color-Coded Single-Particle Pyrophosphate Assay with Dark-Field Optical Microscopy. | LitMetric

Color-Coded Single-Particle Pyrophosphate Assay with Dark-Field Optical Microscopy.

Anal Chem

State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry , Nankai University, Tianjin 300071 , China.

Published: September 2018

In this work, we demonstrate a convenient yet sensitive color-coded single-particle detection method for the quantification of pyrophosphate (PPi) by using single gold nanoparticle (GNP) as the probe. The design is based on GNP-dependent catalytic deposition of Cu onto the surface of GNPs with reduced nicotinamide adenine dinucleotide (NADH). Without PPi, Cu can be directly reduced to Cu through the gold-catalyzed oxidization of NADH. In the presence of PPi, the coating process is impeded due to the strong coordination capability of PPi with Cu. The selective coating of Cu shell onto the GNPs surface results in the extraordinary red-shift of localized surface plasmon resonance from individual GNPs. By quantitatively counting the fraction of yellow particles with color-coded dark-field optical microscopy, the trace amounts of PPi in solution can be accurately quantified. The limit-of-detection is as low as 1.49 nM with a linear dynamic range of 0-4.29 μM, which is much lower than the spectroscopic measurements in bulk solution. In artificial urine sample, good recovery efficiency was achieved. As a consequence, the method demonstrated herein will find promising applications for the ultrasensitive detection of target biomolecules under biological milieu in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.8b03211DOI Listing

Publication Analysis

Top Keywords

color-coded single-particle
8
dark-field optical
8
optical microscopy
8
ppi
5
single-particle pyrophosphate
4
pyrophosphate assay
4
assay dark-field
4
microscopy work
4
work demonstrate
4
demonstrate convenient
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!