Materials such as W, TiN, and SrRuO (SRO) have been suggested as promising alternatives to Au and Ag in plasmonic applications owing to their stability at high operational temperatures. However, investigation of the reproducibility of the optical properties after thermal cycling between room and elevated temperatures is so far lacking. Here, thin films of W, Mo, Ti, TiN, TiON, Ag, Au, SrRuO and SrNbO are investigated to assess their viability for robust refractory plasmonic applications. These results are further compared to the performance of SrMoO reported in literature. Films ranging in thickness from 50 to 105 nm are deposited on MgO, SrTiO and Si substrates by e-beam evaporation, RF magnetron sputtering and pulsed laser deposition, prior to characterisation by means of AFM, XRD, spectroscopic ellipsometry, and DC resistivity. Measurements are conducted before and after annealing in air at temperatures ranging from 300 to 1000° C for one hour, to establish the maximum cycling temperature and potential longevity at elevated temperatures for each material. It is found that SrRuO retains metallic behaviour after annealing at 800° C, while SrNbO undergoes a phase transition resulting in a loss of metallic behaviour after annealing at 400° C. Importantly, the optical properties of TiN and TiON are degraded as a result of oxidation and show a loss of metallic behaviour after annealing at 500° C, while the same is not observed in Au until annealing at 600° C. Nevertheless, both TiN and TiON may be better suited than Au or SRO for high temperature applications operating under vacuum conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.26.015726 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!