Interactions of two truncated Airy pulses with arbitrarily initial relative phases, initial pulse intervals, and different soliton order are numerically investigated in optical fibers. When the soliton order is 1, depending on different initial pulse intervals, the initial in-phase Airy pulses may evolve to single breathing solitons, bound breathing solitons, and single parallel breathing solitons. While the out-of-phase Airy pulses may evolve to parallel or repulsive soliton pairs with breathing or weak breathing, after radiating away some dispersive waves. When the initial relative phases take arbitrary values except 0 and π, moving single breathing solitons and repulsive or parallel soliton pairs will form. Moreover, the whole temporal profiles may become asymmetric. The repulsive soliton pairs consist of two moving breathing solitons with different intensities, moving velocities, and breathing periods. The most interestingly is that, when the soliton order is larger than one, we observe double bound breathing solitons, double parallel breathing soliton pairs, and diverse composite breathing solitons which consist of two or more different breathing solitons. one can effectively manipulate and select the soliton expected and its evolution dynamics by adjusting the soliton order, initial pulse intervals, and initial relative phases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.26.015683 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!