Atherosclerosis is a leading cause of vascular diseases worldwide. Whereas antioxidative therapy has been considered promising for the treatment of atherosclerosis in view of a critical role of reactive oxygen species (ROS) in the pathogenesis of atherosclerosis, currently available antioxidants showed considerably limited clinical outcomes. Herein, we hypothesize that a broad-spectrum ROS-scavenging nanoparticle can serve as an effective therapy for atherosclerosis, taking advantage of its antioxidative stress activity and targeting effects. As a proof of concept, a broad-spectrum ROS-eliminating material was synthesized by covalently conjugating a superoxide dismutase mimetic agent Tempol and a hydrogen-peroxide-eliminating compound of phenylboronic acid pinacol ester onto a cyclic polysaccharide β-cyclodextrin (abbreviated as TPCD). TPCD could be easily processed into a nanoparticle (TPCD NP). The obtained nanotherapy TPCD NP could be efficiently and rapidly internalized by macrophages and vascular smooth muscle cells (VSMCs). TPCD NPs significantly attenuated ROS-induced inflammation and cell apoptosis in macrophages, by eliminating overproduced intracellular ROS. Also, TPCD NPs effectively inhibited foam cell formation in macrophages and VSMCs by decreasing internalization of oxidized low-density lipoprotein. After intravenous (i.v.) administration, TPCD NPs accumulated in atherosclerotic lesions of apolipoprotein E-deficient (ApoE) mice by passive targeting through the dysfunctional endothelium and translocation via inflammatory cells. TPCD NPs significantly inhibited the development of atherosclerosis in ApoE mice after i.v. delivery. More importantly, therapy with TPCD NPs afforded stabilized plaques with less cholesterol crystals, a smaller necrotic core, thicker fibrous cap, and lower macrophages and matrix metalloproteinase-9, compared with those treated with control drugs previously developed for antiatherosclerosis. The therapeutic benefits of TPCD NPs mainly resulted from reduced systemic and local oxidative stress and inflammation as well as decreased inflammatory cell infiltration in atherosclerotic plaques. Preliminary in vivo tests implied that TPCD NPs were safe after long-term treatment via i.v. injection. Consequently, TPCD NPs can be developed as a potential antiatherosclerotic nanotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.8b02037 | DOI Listing |
ACS Nano
October 2021
Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
Stroke is a primary cause of death and disability worldwide, while effective and safe drugs remain to be developed for its clinical treatment. Herein, we report bioactive nanoparticle-derived multifunctional nanotherapies for ischemic stroke, which are engineered from a pharmacologically active oligosaccharide material (termed as TPCD) prepared by covalently conjugating a radical-scavenging compound (Tempol) and a hydrogen-peroxide-eliminating moiety of phenylboronic acid pinacol ester (PBAP) on β-cyclodextrin. Of note, combined functional moieties of Tempol and PBAP on β-cyclodextrin contribute to antioxidative and anti-inflammatory activities of TPCD.
View Article and Find Full Text PDFACS Nano
September 2018
Department of Cardiology , Affiliated Hospital of North Sichuan Medical College, Nanchong 637000 , China.
Atherosclerosis is a leading cause of vascular diseases worldwide. Whereas antioxidative therapy has been considered promising for the treatment of atherosclerosis in view of a critical role of reactive oxygen species (ROS) in the pathogenesis of atherosclerosis, currently available antioxidants showed considerably limited clinical outcomes. Herein, we hypothesize that a broad-spectrum ROS-scavenging nanoparticle can serve as an effective therapy for atherosclerosis, taking advantage of its antioxidative stress activity and targeting effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!