Next generation sequencers produce billions of short DNA sequences in a massively parallel manner, which causes a great computational challenge in accurately reconstructing a genome sequence de novo using these short sequences. Here, we propose the GRASShopPER assembler, which follows an approach of overlap-layout-consensus. It uses an efficient GPU implementation for the sequence alignment during the graph construction stage and a greedy hyper-heuristic algorithm at the fork detection stage. A two-part fork detection method allows us to identify repeated fragments of a genome and to reconstruct them without misassemblies. The assemblies of data sets of bacteria Candidatus Microthrix, nematode Caenorhabditis elegans, and human chromosome 14 were evaluated with the golden standard tool QUAST. In comparison with other assemblers, GRASShopPER provided contigs that covered the largest part of the genomes and, at the same time, kept good values of other metrics, e.g., NG50 and misassembly rate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6095601PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0202355PLOS

Publication Analysis

Top Keywords

fork detection
8
grasshopper-an algorithm
4
algorithm novo
4
novo assembly
4
assembly based
4
based gpu
4
gpu alignments
4
alignments generation
4
generation sequencers
4
sequencers produce
4

Similar Publications

Development of a novel latent deoxyribonucleic acid detection technique for crime scene investigation using quartz tuning fork-based biosensor technology.

Forensic Sci Int

December 2024

Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia. Electronic address:

The forensic Deoxyribonucleic Acid (DNA) fingerprinting is a tool for investigating crime scenes by identifying/tracing criminals and linking crime scenes. However, in cases where experts are unable to detect and identify any biological traces or human-derived cells at the crime scene or while testing the samples in the laboratories, all the advantages offered by forensic laboratories lose their significance. It becomes a waste of time, effort, and resources allocated to these laboratories.

View Article and Find Full Text PDF

Traditional beat frequency quartz-enhanced photoacoustic spectroscopy (BF-QEPAS) are limited by short energy accumulation times and the necessity of a decay period, leading to weaker signals and longer measurement cycles. Herein, we present a novel optomechanical energy-enhanced (OEE-) BF-QEPAS technique for fast and sensitive gas sensing. Our approach employs periodic pulse-width modulation (PWM) of the laser signal with an optimized duty cycle, maintaining the quartz tuning fork's (QTF) output at a stable steady-state level by applying stimulus signals at each half-period and allowing free vibration in alternate half-periods to minimize energy dissipation.

View Article and Find Full Text PDF

Background: The fatal diffuse midline gliomas (DMG) are characterized by an undruggable H3K27M mutation in H3.1 or H3.3.

View Article and Find Full Text PDF

Farm-to-fork changes in poultry microbiomes and resistomes in Maputo City, Mozambique.

mSystems

December 2024

Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA.

Unlabelled: Increasing demand for poultry has spurred poultry production in low- and middle-income countries like Mozambique. Poultry may be an important source of foodborne, antimicrobial-resistant bacteria to consumers in settings with limited water, sanitation, and hygiene infrastructure. The Chicken Exposures and Enteric Pathogens in Children Exposed through Environmental Pathways (ChEEP ChEEP) study was conducted in Maputo City, Mozambique from 2019 to 2021 to quantify enteric pathogen exposures along the supply chain for commercial and local (i.

View Article and Find Full Text PDF

Improved T-shaped quartz tuning fork with isosceles-trapezoidal grooves optimized for quartz-enhanced photoacoustic spectroscopy.

Photoacoustics

February 2025

Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology Ministry of Education, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China.

The quartz tuning fork (QTF) being the acoustic-electrical conversion element for quartz-enhanced photoacoustic spectroscopy (QEPAS) system directly affects the detection sensitivity. However, the low electromechanical conversion efficiency characteristic of standard QTF limits the further enhancement of the system. Therefore, the optimized design for QTF is becoming an important approach to improve the performance of QEPAS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!