We studied theoretically coherent phenomena in the multimode dynamics of single section semiconductor ring lasers with quantum dots (QDs) active region. In the unidirectional ring configuration our simulations show the occurrence of self-mode-locking in the system leading to ultra-short pulses (sub-picoseconds) with a terahertz repetition rate. As confirmed by the linear stability analysis (LSA) of the traveling wave (TW) solutions this phenomenon is triggered by an analogous of the Risken-Nummedal-Graham-Haken (RNGH) instability affecting the multimode dynamics of two-level lasers.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.26.019044DOI Listing

Publication Analysis

Top Keywords

ring lasers
8
multimode dynamics
8
self-pulsing single
4
single ring
4
lasers based
4
based quantum
4
quantum dot
4
dot materials
4
materials theory
4
theory simulations
4

Similar Publications

Multifaceted approach to evacuating multi-level premacular hemorrhage in a case of suspected Valsalva retinopathy - a case report.

BMC Ophthalmol

January 2025

Department of Retina and Vitreous, Narayana Nethralaya, #121/C, 1st R Block, Chord Road, Rajaji Nagar, Bengaluru, Karnataka, 560010, India.

Background: Accurate localization of premacular hemorrhages (PMHs) is crucial as treatment strategies vary significantly based on whether the hemorrhage resides within the vitreous gel, subhyaloid space, or beneath the internal limiting membrane (ILM). This report outlines the clinical features, diagnostic findings, and treatment outcomes in a patient diagnosed with a PMH secondary to suspected Valsalva retinopathy.

Methods: This is a retrospective interventional case report.

View Article and Find Full Text PDF

The proton bond is a pivotal chemical motif in many areas of science and technology. Its quantum chemical description is remarkably challenged by nuclear and charge delocalization effects and the fluxional perturbation that it induces on molecular substrates. This work seeks insights into proton bonding at sub-kelvin temperatures.

View Article and Find Full Text PDF

Helical Surface Relief Formation by Two-Photon Polymerization Reaction Using a Femtosecond Optical Vortex Beam.

J Phys Chem Lett

December 2024

Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.

Optical vortices possess a helical phase wavefront with central phase dislocation and orbital angular momentum. We demonstrated three-dimensional microstructure formation using a femtosecond optical vortex beam. Two-photon polymerization of photocurable resin was induced by long-term exposure, resulting in the fabrication of cylindrical structures.

View Article and Find Full Text PDF

Synergy of Copper Doping and Carbon Defect Engineering in Promoting C-C Coupling for Enhanced CO Photoreduction to Ethanol Activity.

ACS Appl Mater Interfaces

December 2024

Key Laboratory of Industrial Ecology and Environment Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.

Photocatalytic conversion of carbon dioxide (CO) to fuel provides an ideal pathway to achieving carbon neutrality. One significant hindrance in achieving the reduction of CO to higher energy density multicarbon products (C) was the difficulty in coupling C-C bonds efficiently. Copper (Cu) is considered the most suitable metal catalyst for C-C coupling to form C products in the CO reduction reaction (CORR), but it encounters challenges such as low product selectivity and slow catalytic efficiency.

View Article and Find Full Text PDF

Biosensors operating in the terahertz (THz) region are gaining substantial interest in biomedical analysis due to their significant potential for high-sensitivity trace-amount solution detection. However, progress in compact, high-sensitivity chips and methods for simple, rapid and trace-level measurements is limited by the spatial resolution of THz waves and their strong absorption in polar solvents. In this work, a compact nonlinear optical crystal (NLOC)-based reflective THz biosensor with a few arrays of asymmetrical meta-atoms was developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!