For more than a century, the wavelength of light was considered to be a fundamental limit on the spatial resolution of optical imaging. Particularly in light microscopy, this limit, known as Abbe's diffraction limit, places a fundamental constraint on the ability to image sub-cellular organelles with high resolution. However, modern microscopy techniques such as STED, PALM, and STORM, manage to recover sub-wavelength information, by relying on fluorescence imaging. Specifically, PALM/STORM acquire large sequences of fluorescence images from molecules attached to the organelles within the imaged specimen, such that in each frame only a small set of fluorophores are active. The position of each fluorophore can be found accurately in each frame, and the image is recovered by superimposing the points from all frames. The resulting grainy image is subsequently smoothed to produce the final super-resolved image with a resolution of tens of nano-meters. However, because PALM/STORM rely on many (>10,000) exposures, they suffer from poor temporal resolution. To address that, super-resolution optical fluctuation imaging (SOFI) was shown to produce sub-diffraction images with increased temporal resolution, by allowing for higher fluorophore density and exploiting the temporal statistics of the emissions. However, the improved temporal resolution of SOFI comes at the expense of its spatial resolution, which is not as high as that of PALM/STORM. Here, we present a new method called SPARCOM: sparsity-based super-resolution correlation microscopy, which combines a shorter integration time than previously reported with spatial resolution comparable to PALM and STORM. SPARCOM relies on sparsity in the correlation domain, exploiting the sparse distribution of fluorescent molecules and the lack of correlation between different emitters. We demonstrate our technique in simulations and in experiments and provide comparisons to state-of-the-art high density methods.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.26.018238DOI Listing

Publication Analysis

Top Keywords

spatial resolution
12
temporal resolution
12
sparsity-based super-resolution
8
resolution
8
palm storm
8
microscopy
4
super-resolution microscopy
4
correlation
4
microscopy correlation
4
correlation century
4

Similar Publications

Background: Hypothyroidism is a common sequela after radiotherapy for nasopharyngeal carcinoma (NPC). Magnetic resonance imaging (MRI) has gained prominence in thyroid imaging, leveraging its non-ionizing radiation, high spatial resolution, multiparameter and multidirectional imaging. Few previous studies have investigated the evaluation of radiation-induced thyroid injury by MRI.

View Article and Find Full Text PDF

The study of transient and variable events, including novae, active galactic nuclei, and black hole binaries, has historically been a fruitful path for elucidating the evolutionary mechanisms of our universe. The study of such events in the millimeter and submillimeter is, however, still in its infancy. Submillimeter observations probe a variety of materials, such as optically thick dust, which are hard to study in other wavelengths.

View Article and Find Full Text PDF

Background: Ticks are the primary vectors of numerous zoonotic pathogens, transmitting more pathogens than any other blood-feeding arthropod. In the northern hemisphere, tick-borne disease cases in humans, such as Lyme borreliosis and tick-borne encephalitis, have risen in recent years, and are a significant burden on public healthcare systems. The spread of these diseases is further reinforced by climate change, which leads to expanding tick habitats.

View Article and Find Full Text PDF

A proof-of-concept study for precise mapping of pigmented basal cell carcinoma in asian skin using multispectral optoacoustic tomography imaging with level set segmentation.

Eur J Nucl Med Mol Imaging

January 2025

A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #07-01, Nanos, Singapore, 138669, Republic of Singapore.

Purpose: Basal Cell Carcinoma (BCC), the most common subtype of non-melanoma skin cancers (NMSC), is prevalent worldwide and poses significant challenges due to their increasing incidence and complex treatment considerations. Existing clinical approaches, such as Mohs micrographic surgery, are time-consuming and labour-intensive, requiring meticulous layer-by-layer excision and examination, which can significantly extend the duration of the procedure. Current optical imaging solutions also lack the necessary spatial resolution, penetration depth, and contrast for effective clinical use.

View Article and Find Full Text PDF

This experimental phantom study investigates current standard of care protocols in cone beam computed tomography (CBCT), energy-integrating-detector (EID) CT, and photon-counting-detector (PCD) CT regarding their potential in delineation of dental root canals. Artificial accessory canals (diameters: 1000, 600, 400, 300 and 200 μm) were drilled into three bovine teeth mounted on a bovine rib as a jaw substitute. The phantom was scanned in two dental CBCTs, two EID-CTs and a PCD-CT using standard clinical protocols.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!