We present the theory of ray-optical transformation optics (RTO) with ideal thin lenses and show that ideal-thin-lens RTO devices are omnidirectional lenses. Key to designing such devices are two theorems, the loop-imaging theorem, and the edge-imaging theorem, which ensure that the interior physical space is distorted in the same way for all viewing directions. We discuss the possibility of realising such devices using lens holograms or Fresnel lenses, as both are in principle capable of changing the directions of rays incident from a specific point precisely like an ideal thin lens, thereby enabling macroscopic and broad-band RTO devices that work for at least one viewing position. Even when restricted in this way, our work opens up new possibilities in ray optics. Our devices have the potential to form the basis of new microscope objectives, virtual-reality headsets, and medical spectacles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.26.017872 | DOI Listing |
Sci Bull (Beijing)
December 2024
Department of Chemistry, Laboratory of Advance Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai 200433, China. Electronic address:
Hierarchical organization is prevalent in nature, yet the artificial construction of hierarchical materials featuring asymmetric structures remains a big challenge. Herein, we report a stress-induced self-assembly strategy for the synthesis of hierarchically twisted stripe arrays (HTSAs) with mesoporous structures. A soft and thin mesostructured film assembled by micelles and TiO oligomers is the prerequisite.
View Article and Find Full Text PDFFront Nutr
December 2024
Healthy Starts, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.
Not all adolescents have positive sport experiences. Research has repeatedly identified ties between unfavorable eating patterns and food beliefs (i.e.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea.
The field of perovskite optoelectronics and electronics has rapidly advanced, driven by excellent material properties and a diverse range of fabrication methods available. Among them, triple-cation perovskites such as CsFAMAPbI offer enhanced stability and superior performance, making them ideal candidates for advanced applications. However, the multicomponent nature of these perovskites introduces complexity, particularly in how their structural, optical, and electrical properties are influenced by thermal annealing─a critical step for achieving high-quality thin films.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
Perovskite-organic tandem solar cells (P-O-TSCs) hold substantial potential to surpass the theoretical efficiency limits of single-junction solar cells. However, their performance is hampered by non-ideal interconnection layers (ICLs). Especially in n-i-p configurations, the incorporation of metal nanoparticles negatively introduces serious parasitic absorption, which alleviates photon utilization in organic rear cell and decisively constrains the maximum photocurrent matching with front cell.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, United States.
Pyrochlore materials are known for their exotic magnetic and topological phases arising from complex interactions among electron correlations, band topology, and geometric frustration. Interfaces between different pyrochlore crystals characterized by complex many-body ground states hold immense potential for novel interfacial phenomena due to the strong interactions between these phases. However, the realization of such interfaces has been severely hindered by limitations in material synthesis methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!