A channel mismatch model for time-interleaved photonic analog-to-digital converters is built by decomposing both optical time division multiplexing channels and the wavelength division multiplexing channels into time channels with uniform and equal-amplitude sampling clock. Based on the model, the influence of power and timing mismatch of optical sampling pulse trains, optical sampling pulse temporal shape mismatches, photodetection bandwidth mismatches on the sampling results are analyzed theoretically. Depending on the found relationship between unmodulated components and modulated components, an effective online amplitude mismatch correction method applicable to wideband signals is proposed. The theoretical results are verified on a 4-channel TIPADC system. The proposed amplitude mismatch correction method can suppress the spurs caused by unmodulated components mismatch and modulated components mismatch by ~50 dB and ~30 dB for a two-tone signal, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.26.017859 | DOI Listing |
Dev Med Child Neurol
January 2025
Queensland Cerebral Palsy and Rehabilitation Research Centre, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
Aim: To identify developmental trajectories of impaired hand function in infants aged 3 to 15 months with unilateral cerebral palsy (CP).
Method: Sixty-three infants (37 male; median gestational age 37 weeks [interquartile range 30-39.1 weeks]) recruited as part of a randomized trial with a confirmed diagnosis of unilateral CP were included.
J Mammary Gland Biol Neoplasia
January 2025
Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
Fluorescent biosensors offer a powerful tool for tracking and quantifying protein activity in living systems with high temporospatial resolution. However, the expression of genetically encoded fluorescent proteins can interfere with endogenous signaling pathways, potentially leading to developmental and physiological abnormalities. The EKAREV-NLS mouse model, which carries a FRET-based biosensor for monitoring extracellular signal-regulated kinase (ERK) activity, has been widely utilized both in vivo and in vitro across various cell types and organs.
View Article and Find Full Text PDFPurpose: Previous studies have shown that subtrochanteric femoral fractures treated with intramedullary nails might lead to varus-procurvatum malalignment. Similar results have been reported when using antegrade intramedullary lengthening nails (ILNs). The purpose of our study is to examine if antegrade telescoping intramedullary lengthening nails lead to varus-procurvatum malalignment of the proximal femur and what are possible predictors of that shift.
View Article and Find Full Text PDFMagn Reson Med
January 2025
Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China.
Purpose: This work aims to raise a novel design for navigator-free multiband (MB) multishot uniform-density spiral (UDS) acquisition and reconstruction, and to demonstrate its utility for high-efficiency, high-resolution diffusion imaging.
Theory And Methods: Our design focuses on the acquisition and reconstruction of navigator-free MB multishot UDS diffusion imaging. For acquisition, radiofrequency-pulse encoding was used to achieve controlled aliasing in parallel imaging in MB imaging.
Urologia
January 2025
Department of Urology and Renal Transplantation, Sanjay Gandhi Postgraduate Institute of Medical Sciences Lucknow, Lucknow, Uttar Pradesh, India.
Introduction: Pseudotumors are benign lesions which may mimic like a malignant tumor on conventional imaging. They are formed in kidneys which are scarred and deformed by chronic pyelonephritis, glomerulonephritis, trauma or infarction. There is a diagnostic dilemma in most of the cases as to differentiate RCC and pseudotumors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!