The spatial distribution of electric field in photovoltaic multiple quantum wells (MQWs) is extremely important to dictate the mutual competition of photoelectric conversion and optical transition. Here, electric-field-driven photoluminescence (PL) in both steady-state and transient-state has been utilized to directly investigate the internal photoelectric conversion processes in InGaN-based MQW photovoltaic cell. As applying the reversed external electric field, the compensation of the quantum confined stark effect (QCSE) in InGaN QW is beneficial to help the photoabsorbed minor carriers drift out from the localized states, whereas extremely weakening the PL radiative recombination. A directly driven force by the reversed external electric field decreases the transit time of photocarriers drifting in InGaN QW. And hence, the overall dynamic PL decay including both the slow and fast processes gradually speeds up from 19.2 ns at the open-circuit condition to 3.9 ns at a negative bias of -3 V. In particular, the slow PL decay lifetime declines more quickly than that of the fast one. It is the delocalization of photocarriers by electric-field drift that helps to further enhance the high-efficiency photoelectric conversion except for the tunneling transport in InGaN-based MQW photovoltaics. Therefore, it can be concluded that the electric-field PL probe may provide a direct method for evaluating the photoelectric conversion in multilayer quantum structures and related multijunction photovoltaic cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.26.00A615 | DOI Listing |
Talanta
January 2025
Department of Chemistry and Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong, 515063, P.R. China; Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Shantou, Guangdong, 515063, P.R. China; Analysis & Testing Center, Shantou University, Shantou, Guangdong, 515063, P.R. China. Electronic address:
CYFRA21-1 is a tumor marker for lung cancer, and its rapid and accurate detection can provide evidence for the early diagnosis of lung cancer. In this work, Bi-Fe turnbull blue analogues (Bi-Fe-TBA) were synthesized by the self-templating method. BiO-SFNs was prepared by simple oxidation in air using Bi-Fe-TBA as a template.
View Article and Find Full Text PDFResearch (Wash D C)
January 2025
Key Laboratory for UV Light-Emitting Materials and Technology (Ministry of Education), College of Physics, Northeast Normal University, Changchun, China.
The optoelectronic memristor integrates the multifunctionalities of image sensing, storage, and processing, which has been considered as the leading candidate to construct novel neuromorphic visual system. In particular, memristive materials with all-optical modulation and complementary metal oxide semiconductor (CMOS) compatibility are highly desired for energy-efficient image perception. As a p-type oxide material, CuO exhibits outstanding theoretical photoelectric conversion efficiency and broadband photoresponse.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China.
The photoelectric conversion efficiency (PCE) of perovskites remains beneath the Shockley-Queisser limit, despite its significant potential for solar cell applications. The present focus is on investigating potential multicomponent perovskite candidates, particularly on the application of machine learning to expedite band gap screening. To efficiently identify high-performance perovskites, we utilized a data set of 1346 hybrid organic-inorganic perovskites and employed 11 machine learning models, including decision trees, convolutional neural networks (CNNs), and graph neural networks (GNNs).
View Article and Find Full Text PDFSensors (Basel)
December 2024
College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China.
Photovoltaic arrays are exposed to outdoor conditions year-round, leading to degradation, cracks, open circuits, and other faults. Hence, the establishment of an effective fault diagnosis system for photovoltaic arrays is of paramount importance. However, existing fault diagnosis methods often trade off between high accuracy and localization.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.
High mobility emissive organic semiconductors (HMEOSCs) are a kind of unique semiconducting material that simultaneously integrates high charge carrier mobility and strong emission features, which are not only crucial for overcoming the performance bottlenecks of current organic optoelectronic devices but also important for constructing high-density integrated devices/circuits for potential smart display technologies and electrically pumped organic lasers. However, the development of HMEOSCs is facing great challenges due to the mutually exclusive requirements of molecular structures and packing modes between high charge carrier mobility and strong solid-state emission. Encouragingly, considerable advances on HMEOSCs have been made with continuous efforts, and the successful integration of these two properties within individual organic semiconductors currently presents a promising research direction in organic electronics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!