Knowledge of accurate values of elastic modulus of (AlSc)N is required for design of piezoelectric resonators and related devices. Thin films of (AlSc)N across the entire composition space are deposited and characterized. Accuracy of modulus measurements is improved and quantified by removing the influence of substrate effects and by direct comparison of experimental results with density functional theory calculations. The 5%-30% Sc compositional range is of particular interest for piezoelectric applications and is covered at higher compositional resolution here than in previous work. The reduced elastic modulus is found to decrease by as much as 40% with increasing Sc concentration in the wurtzite phase according to both experimental and computational techniques, whereas Sc-rich rocksalt-structured films exhibit little variation in modulus with composition.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TUFFC.2018.2862240DOI Listing

Publication Analysis

Top Keywords

elastic modulus
12
modulus alscn
8
modulus
5
characterization elastic
4
alscn system
4
system dft
4
dft substrate-effect-corrected
4
substrate-effect-corrected nanoindentation
4
nanoindentation knowledge
4
knowledge accurate
4

Similar Publications

Study on Starch-Based Thickeners in Chyme for Dysphagia Use.

Foods

December 2024

College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.

A dysphagia diet is a special dietary programme. The development and design of foods for dysphagia should consider both swallowing safety and food nutritional quality. In this study, we investigated the rheological properties (viscosity, thixotropy, and viscoelasticity), textural properties, and swallowing behaviour of commercially available natural, pregelatinised, acetylated, and phosphorylated maize starch and tapioca starch.

View Article and Find Full Text PDF

Macro-Micro Properties of Remodeled Waste Slurry Under Freeze-Thaw Cycles.

Materials (Basel)

January 2025

School of Civil and Transportation Engineering, Hebei University of Technology, Xiping Road 5340, Tianjin 300401, China.

Waste slurry, a major by-product of urban construction, is produced in rapidly increasing volumes each year. Dehydrated waste slurry has potential as a roadbed material; however, its performance in freeze-thaw environments, which can induce frost heave and thaw settlement, and the mechanism of the influence of freeze-thaw cycles on its macro and micro properties are still unclear and need thorough investigation. This study explores the macroscopic and microscopic properties of waste slurry subjected to freeze-thaw cycles.

View Article and Find Full Text PDF

The metastable β-Ti21S alloy exhibits a lower elastic modulus than Ti-6Al-4V ELI while maintaining high mechanical strength and ductility. To address stress shielding, this study explores the integration of lattice structures within prosthetics, which is made possible through additive manufacturing. Continuous adhesion between the implant and bone is essential; therefore, auxetic bow-tie structures with a negative Poisson's ratio are proposed for regions under tensile stress, while Triply Periodic Minimal Surface (TPMS) structures with a positive Poisson's ratio are recommended for areas under compressive stress.

View Article and Find Full Text PDF

An Investigation of the Indentation Elastic Modulus for Metal Films on Flexible Substrates Considering the Substrate Effect.

Materials (Basel)

January 2025

Materials Research Centre for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University, Andong 36729, Republic of Korea.

The accurate measurement of the elastic modulus of thin metal films on flexible substrates is critical for understanding the mechanical reliability of flexible electronics. However, conventional methods, such as the Oliver-Pharr model, often underestimate the modulus due to substrate effects, particularly with low-modulus substrates like polyimide (PI). In this study, we propose an improved weighting model that replaces the empirical weighting factor with a variable X to better account for substrate contributions.

View Article and Find Full Text PDF

Cemented Sand, Gravel, and Rock (CSGR) dams have traditionally used either Conventional Vibrated Concrete (CVC) or Grout-Enriched Roller Compacted Concrete (GERCC) for protective and seepage control layers in low- to medium-height dams. However, these methods are complex, prone to interference, and uneconomical due to significant differences in the expansion coefficient, elastic modulus, and hydration heat parameters among CSGR, CVC, and GERCC. This complexity complicates quality control during construction, leading to the development of Grout-Enriched Vibrated Cemented Sand, Gravel, and Rock (GECSGR) as an alternative.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!