Graphene-Loaded BiSe: A Conversion-Alloying-type Anode Material for Ultrafast Gravimetric and Volumetric Na Storage.

ACS Appl Mater Interfaces

State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials , Beijing University of Chemical Technology, Beijing 100029 , P. R. China.

Published: September 2018

Sodium-ion battery (SIB) has been a promising alternative for sustainable electrochemical energy-storage devices. However, it still needs great efforts to develop electrode materials with ultrafast gravimetric and volumetric Na-storage performance, due to difficult balance between Na-ion diffusion kinetics and pressing density of materials. In this work, BiSe/graphene composites, synthesized by a selenization reaction, are investigated as anode materials for SIBs. Na-ion storage mechanism of BiSe should be attributed to a combined conversion-alloying one by a series of ex situ measurements. In the composites, BiSe particles with an average diameter of 100 nm are uniformly dispersed onto graphene with strong interfacial interaction. Despite their nanoscale size, the pressing density of BiSe/graphene composite could still reach a high value of 2.07 g/cm. Therefore, the composites can deliver a high gravimetric specific capacity of 346 mAh/g and volumetric specific capacity of 716 mAh/cm at a current density of 0.1 A/g. Remarkably, the composites exhibit an ultrafast Na-storage capability and a negligible capacity fading with the increasing of current density from 0.2 to 5 A/g. Even at 10 A/g (≈30 C), the composites still possess a gravimetric capacity of 183 mAh/g and volumetric capacity of 379 mAh/cm with ultrastable cyclability up to 1000 cycles. This work introduces a valid route to design electrode materials with both excellent gravimetric and volumetric performance of Na-ion storage.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b09538DOI Listing

Publication Analysis

Top Keywords

gravimetric volumetric
12
ultrafast gravimetric
8
electrode materials
8
pressing density
8
na-ion storage
8
specific capacity
8
mah/g volumetric
8
current density
8
density a/g
8
gravimetric
5

Similar Publications

Synthesis of pillar-layered metal-organic frameworks with variable backbones through sequence control.

Nat Chem

January 2025

Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, China.

The properties and functions of metal-organic frameworks (MOFs) can be tailored by tuning their structure, including their shape, porosity and topology. However, the design and synthesis of complex structures in a predictable manner remains challenging. Here we report the preparation of a series of isomeric pillar-layered MOFs, and we show that their three-dimensional topology can be controlled by altering the layer stacking.

View Article and Find Full Text PDF

Carbon dioxide capture is a vital approach for mitigating air pollution and global warming. In this context, metal-organic frameworks are promising candidates. Particularly, MIL-88A (M), where the metal nodes (M) are connected to fumarate linkers in its structure, has demonstrated significant potential for CO capture.

View Article and Find Full Text PDF

Tests for diagnosis of postpartum haemorrhage at vaginal birth.

Cochrane Database Syst Rev

January 2025

School of Medical Sciences, Department of Metabolism and Systems Science, WHO Collaborating Centre for Global Women's Health Research, University of Birmingham, Birmingham, UK.

Background: Postpartum haemorrhage (PPH) is the leading cause of maternal mortality worldwide. Accurate diagnosis of PPH can prevent adverse outcomes by enabling early treatment.

Objectives: What is the accuracy of methods (index tests) for diagnosing primary PPH (blood loss ≥ 500 mL in the first 24 hours after birth) and severe primary PPH (blood loss ≥ 1000 mL in the first 24 hours after birth) (target conditions) in women giving birth vaginally (participants) compared to weighed blood loss measurement or other objective measurements of blood loss (reference standards)?

Search Methods: We searched CENTRAL, MEDLINE, Embase, Web of Science Core Collection, ClinicalTrials.

View Article and Find Full Text PDF

A new 3D metallic, ductile, and porous boron nitride as a promising anode material for sodium-ion batteries.

Phys Chem Chem Phys

January 2025

Department of Physics, Institute for Sustainable Energy and Environment, Virginia Commonwealth University, Richmond, VA, 23284, USA.

We propose a new stable three-dimensional (3D) porous and metallic boron nitride anode material, named h-BN, with good ductility for sodium-ion batteries (SIBs). Based on first-principles calculations and a tight-binding model, we demonstrate that the metallicity originates from the synergistic contribution of the p-orbital of the sp-hybridized B and N atoms, while the ductility is due to the unique configurations of B-B and N-N dimers in the structure. More importantly, this boron nitride allotrope exhibits a high reversible capacity of 582.

View Article and Find Full Text PDF

Quantifying the Impact of Soil Moisture Sensor Measurements in Determining Green Stormwater Infrastructure Performance.

Sensors (Basel)

December 2024

Department of Civil and Environmental Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA.

The ability to track moisture content using soil moisture sensors in green stormwater infrastructure (GSI) systems allows us to understand the system's water management capacity and recovery. Soil moisture sensors have been used to quantify infiltration and evapotranspiration in GSI practices both preceding, during, and following storm events. Although useful, soil-specific calibration is often needed for soil moisture sensors, as small measurement variations can result in misinterpretation of the water budget and associated GSI performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!