Enhancer activities of amphioxus Brachyury genes in embryos of the ascidian, Ciona intestinalis.

Genesis

Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.

Published: August 2018

The notochord and somites are distinctive chordate structures. The T-box transcription factor gene, Brachyury, is expressed in notochord and plays a pivotal role in its formation. In the cephalochordate, Branchiostoma floridae, Brachyury is duplicated into BfBra1 and BfBra2, which are expressed in the somite-formation region as well. In a series of experiments to elucidate the regulatory machinery of chordate Brachyury expression, we carried out a lacZ reporter assay of BfBra in embryos of the urochordate, Ciona intestinalis. Vista analyses suggest the presence of conserved non-coding sequences, not only in the 5'-upstream, but also in the 3'-downstream and in introns of BfBra. We found that: (1) 5'-upstream sequences of both BfBra1 and BfBra2 promote lacZ expression in muscle cells, (2) 3'-downstream sequences have enhancer activity that promotes lacZ expression in notochord cells, and (3) introns of BfBra2 and BfBra1 exhibit lacZ expression preferentially in muscle and notochord cells. These results suggest shared cephalochordate Brachyury enhancer machinery that also works in urochordates. We discuss the results in relation to evolutionary modification of Brachyury expression in formation of chordate-specific organs characteristic of each lineage.

Download full-text PDF

Source
http://dx.doi.org/10.1002/dvg.23240DOI Listing

Publication Analysis

Top Keywords

lacz expression
12
ciona intestinalis
8
bfbra1 bfbra2
8
brachyury expression
8
notochord cells
8
brachyury
6
expression
5
enhancer activities
4
activities amphioxus
4
amphioxus brachyury
4

Similar Publications

The Jun dimerization protein (Jdp2) gene is active in mouse cerebellar granule cells and its protein product plays a crucial role in the formation of the cerebellum lobes through programmed cell death. However, the role of Jdp2 in cellular differentiation and pluripotency in the cerebellum, and the effect of the antioxidation reaction on cell plasticity, remain unknown. N-acetyl-L-cysteine (NAC) induced the early commitment of the differentiation of granule cell precursors (GCPs) to neurons, especially Purkinje cells, via the γ-aminobutyric acid type A receptor α6 subunit (Gabra6) axis; moreover, Jdp2 depletion enhanced this differentiation program of GCPs.

View Article and Find Full Text PDF

SPINT1, a membrane-anchored serine protease inhibitor, regulates cascades of pericellular proteolysis while its tissue-specific functions remain incompletely characterized. In this study, we generate Spint1-lacZ knock-in mice and observe Spint1 expression in embryonic pancreatic epithelium. Pancreas-specific Spint1 disruption significantly diminishes islet size and mass, causing glucose intolerance and downregulation of MAFA and insulin.

View Article and Find Full Text PDF

Purpose: Visual System Homeobox 2 () is a transcription factor expressed in the developing retina that regulates tissue identity, growth, and fate determination. Several mutations in the gene exist in mice, including a spontaneous nonsense mutation and two targeted missense mutations originally identified in humans. Here, we expand the genetic repertoire to include a reporter allele ( ) designed to express beta-Galactosidase (bGal) and simultaneously disrupt function (knock-in/knock-out).

View Article and Find Full Text PDF

Lacto-N-tetraose (LNT) is a functional human milk oligosaccharide (HMO) commercially added to infant formula. Metabolically engineered strains for efficient production of LNT have been widely constructed. However, most of them rely on the use of plasmids, which might bring metabolic burden and the antibiotic issue.

View Article and Find Full Text PDF

Hansenula mrakii killer toxin resistant gene 1 (HKR1) is an intronless, single-exon gene that encodes Hkr1, the signaling mucin of the budding yeast Saccharomyces cerevisiae. HKR1 overexpression confers S. cerevisiae cells with resistance to the HM-1 killer toxin produced by the killer yeast Hansenula mrakii (currently known as Cyberlindnera mrakii).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!