Electrical coupling between hippocampal neurons: contrasting roles of principal cell gap junctions and interneuron gap junctions.

Cell Tissue Res

Institut für Physiologie und Pathophysiologie, Universität Heidelberg, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany.

Published: September 2018

There is considerable experimental evidence, anatomical and physiological, that gap junctions exist in the hippocampus. Electrical coupling through these gap junctions may be divided into three types: between principal neurons, between interneurons and at mixed chemical (glutamatergic)/electrical synapses. An approach, combining in vitro experimental with modeling techniques, sheds some light on the functional consequences of electrical coupling, for network oscillations and for seizures. Additionally, in vivo experiments, using mouse connexin knockouts, suggest that the presence of electrical coupling is important for optimal performance on selected behavioral tasks; however, the interpretation of such data, in cellular terms, has so far proven difficult. Given that invertebrate central pattern generators so often depend on both chemical and electrical synapses, our hypothesis is that hippocampus-mediated and -influenced behaviors will act likewise. Experiments, likely hard ones, will be required to test this intuition.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00441-018-2881-3DOI Listing

Publication Analysis

Top Keywords

electrical coupling
16
gap junctions
16
electrical
5
coupling hippocampal
4
hippocampal neurons
4
neurons contrasting
4
contrasting roles
4
roles principal
4
principal cell
4
gap
4

Similar Publications

Objectives: Ischemia/reperfusion (IR)-induced ventricular arrhythmia, which mainly occurs after the opening of coronary artery occlusion, poses a clinical problem. This study aims to investigate the effectiveness of pretreatment with coenzyme Q (CoQ) in combination with mitochondrial transplantation on IR-induced ventricular arrhythmias in aged rats.

Materials And Methods: Myocardial IR induction was performed by left anterior descending coronary artery occlusion for 30 min, followed by re-opening for 24 hr.

View Article and Find Full Text PDF

Fluorine-Free Ion-Selective Membrane with Enhanced Mg Transport for Mg-Organic Batteries.

ACS Nano

January 2025

Department of Electrical and Computer Engineering and Texas Center for Superconductivity at the University of Houston, University of Houston, Houston, Texas 77204, United States.

Magnesium batteries offer a safer alternative for next-generation battery technology due to their insusceptibility to dendrite deposition. Selective membranes tailored for magnesium-ion conduction will unlock further technological advancement. Herein, we demonstrate fluorine-free magnesiated sulfonated poly(ether ether ketone) (Mg-SPEEK) selective membranes capable of facilitating magnesium-ion conduction while effectively rejecting soluble organic species.

View Article and Find Full Text PDF

Film-coupled plasmonic resonators offer efficient platforms for light enhancement due to the excitation of gap surface plasmons (GSPs) at metal-insulator-metal interfaces, where electromagnetic energy is stored within the spacer. In applications like biosensing and spontaneous emission control, spatial overlap between the target molecule and plasmonic hotspots is essential. Here, we propose utilizing the controllable, efficient light enhancement capabilities of a specifically designed GSP disk resonator for biosensing and spontaneous emission enhancement.

View Article and Find Full Text PDF

Recent advances in near-field interference detection, inspired by the non-Hermitian coupling-induced directional sensing of Ormia ochracea, have demonstrated the potential of paired semiconductor nanowires for compact light field detection without optical filters. However, practical implementation faces significant challenges including limited active area, architectural scaling constraints, and incomplete characterization of angular and polarization information. Here, we demonstrate a filterless vector light field photodetector, leveraging the angle- and polarization-sensitive near-field interference of non-Hermitian semiconductor nanostructures.

View Article and Find Full Text PDF

We present a semi-analytical model that can accurately explain the working principle behind the recently reported electrically injected InGaAs/GaAs monolithic nano-ridge lasers and more importantly show how the model can be used to study the effect of device parameters on the spectral behavior, the slope efficiency and the threshold gain. We show that mode beating between the fundamental mode and a higher order mode is fundamental in the operation of these lasers. Analytical expressions for codirectional mode coupling are used in developing the round-trip laser model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!