Background And Objectives: The microbial communities of traditional milk-based food are of great importance in its manufacturing process, especially when using raw milk with natural cultures. Liqvan (Lighvan or Levan) is a traditional Iranian buried cheese, which is made from raw ewe's milk without a starter addition. The aim of this study was to explore the fungal active population during this cheese manufacturing process by comparing DNA and RNA based culture independent method Denaturing Gradient Gel Electrophoresis (DGGE).
Materials And Methods: Four samples of each milk, curd and ripened cheese were collected from Liqvan village located in East Azerbaijan province of Iran. Total DNA and RNA of each sample were extracted and PCR amplicons of D1 region of 26S rRNA gene was targeted for DGGE analysis. This method applied at both DNA and RNA levels in order to examine which taxonomic groups of fungi are active at each step of ripening.
Results: DGGE profiles of yeast amplicons showed different results between extracted DNA and RNA during ripening process. However, the main group that is present in all stages of ripening process belongs to the genus although and are most abundant fungi.
Conclusion: As no starter culture added to Liqvan cheese it seems fungal diversity are mainly rely on the indigenous microbiota of milk. Furthermore, the percentage of the dominant fungal genera from the total sequences differed among DNA and cDNA libraries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6087696 | PMC |
Background: TAR-DNA-binding protein 43 (TDP43), is a pathologic marker in neurodegenerative diseases including frontotemporal lobar degeneration and amyotrophic lateral sclerosis. The aggregation of TDP-43, a crucial RNA-binding protein, is a consequence of post-translational modifications (PTMs) that disrupt its normal function. PTMs such as phosphorylation and ubiquitination contribute to the aberrant accumulation of TDP-43 aggregates, leading to neurodegenerative disorders like amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD).
View Article and Find Full Text PDFNAR Genom Bioinform
March 2025
National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
Small proteins (≤100 amino acids) play important roles across all life forms, ranging from unicellular bacteria to higher organisms. In this study, we have developed SProtFP which is a machine learning-based method for functional annotation of prokaryotic small proteins into selected functional categories. SProtFP uses independent artificial neural networks (ANNs) trained using a combination of physicochemical descriptors for classifying small proteins into antitoxin type 2, bacteriocin, DNA-binding, metal-binding, ribosomal protein, RNA-binding, type 1 toxin and type 2 toxin proteins.
View Article and Find Full Text PDFJ Cancer
January 2025
Department of Neurosurgery, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, South Korea.
Glioblastoma multiforme (GBM) is the most lethal type of primary brain tumor, necessitating the discovery of reliable serum prognostic biomarkers. This study aimed to investigate the prognostic value of serum Interleukin-6 (IL-6) in GBM patients. Bioinformatics analysis via gene set enrichment analysis was conducted on The Cancer Genome Atlas RNA-seq data to explore the pathways enriched in samples with high expression.
View Article and Find Full Text PDFJ Med Life
November 2024
Biophysics and Cellular Biotechnology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.
Optical tweezers, which leverage the forces exerted by radiation pressure, have emerged as a pivotal technique for precisely manipulating and analyzing microscopic particles. Since Arthur Ashkin's ground-breaking work in the 1970s and the subsequent development of the single-beam optical trap in 1986, the capabilities of optical tweezers have expanded significantly, enabling the intricate manipulation of biological specimens at the micro- and nanoscale. This review elucidates the foundational principles of optical trapping and their extensive applications in the biomedical sciences.
View Article and Find Full Text PDFMol Microbiol
January 2025
Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea.
The distance between the ribosome and the RNA polymerase active centers, known as the mRNA loop length, is crucial for transcription-translation coupling. Despite the existence of multiple expressomes with varying mRNA loop lengths, their in vivo roles remain largely unexplored. This study examines the mechanisms governing transcription termination in the Escherichia coli galactose operon, revealing a crucial role in the transcription and translation coupling state.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!