Skeletal muscle dysfunction is a frequent extra-pulmonary manifestation of Chronic Obstructive Pulmonary Disease (COPD) with implications for both quality of life and survival. The underlying biology nevertheless remains poorly understood. We measured global gene transcription in the quadriceps using Affymetrix HuGene1.1ST arrays in an unselected cohort of 79 stable COPD patients in secondary care and 16 healthy age- and gender-matched controls. We detected 1,826 transcripts showing COPD-related variation. Eighteen exhibited ≥2fold changes (SLC22A3, FAM184B, CDKN1A, FST, LINC01405, MUSK, PANX1, ANKRD1, C12orf75, MYH1, POSTN, FRZB, TNC, ACTC1, LINC00310, MYH3, MYBPH and AREG). Thirty-one transcripts possessed previous reported evidence of involvement in COPD through genome-wide association, including FAM13A. Network analysis revealed a substructure comprising 6 modules of co-expressed genes. We identified modules with mitochondrial and extracellular matrix features, of which IDH2, a central component of the mitochondrial antioxidant pathway, and ABI3BP, a proposed switch between proliferation and differentiation, represent hubs respectively. COPD is accompanied by coordinated patterns of transcription in the quadriceps involving the mitochondria and extracellular matrix and including genes previously implicated in primary disease processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6093887PMC
http://dx.doi.org/10.1038/s41598-018-29789-6DOI Listing

Publication Analysis

Top Keywords

extracellular matrix
12
copd accompanied
8
mitochondria extracellular
8
transcription quadriceps
8
copd
5
accompanied co-ordinated
4
co-ordinated transcriptional
4
transcriptional perturbation
4
perturbation quadriceps
4
quadriceps mitochondria
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!