Rab6 promotes insulin receptor and cathepsin trafficking to regulate autophagy induction and activity in .

J Cell Sci

Department of Genetics, Cell Biology and Development, 6-160 Jackson Hall, 321 Church St. SE, University of Minnesota, Minneapolis, MN 55455, USA

Published: September 2018

The self-degradative process of autophagy is important for energy homeostasis and cytoplasmic renewal. This lysosome-mediated pathway is negatively regulated by the target of rapamycin kinase (TOR) under basal conditions, and requires the vesicle trafficking machinery regulated by Rab GTPases. However, the interactions between autophagy, TOR and Rab proteins remain incompletely understood Here, we identify Rab6 as a critical regulator of the balance between TOR signaling and autolysosome function. Loss of Rab6 causes an accumulation of enlarged autophagic vesicles resulting in part from a failure to deliver lysosomal hydrolases, rendering autolysosomes with a reduced degradative capacity and impaired turnover. Additionally, Rab6-deficient cells are reduced in size and display defective insulin-TOR signaling as a result of mis-sorting and internalization of the insulin receptor. Our findings suggest that Rab6 acts to maintain the reciprocal regulation between autophagy and TOR activity during distinct nutrient states, thereby balancing autophagosome production and turnover to avoid autophagic stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6140324PMC
http://dx.doi.org/10.1242/jcs.216127DOI Listing

Publication Analysis

Top Keywords

insulin receptor
8
autophagy tor
8
rab6
4
rab6 promotes
4
promotes insulin
4
receptor cathepsin
4
cathepsin trafficking
4
trafficking regulate
4
autophagy
4
regulate autophagy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!