A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Three-dimensional phase field modeling of inhomogeneous gas-liquid systems using the PeTS equation of state. | LitMetric

Recently, an equation of state (EoS) for the Lennard-Jones truncated and shifted (LJTS) fluid has become available. As it describes metastable and unstable states well, it is suited for predicting density profiles in vapor-liquid interfaces in combination with density gradient theory (DGT). DGT is usually applied to describe interfaces in Cartesian one-dimensional scenarios. In the present work, the perturbed LJ truncated and shifted (PeTS) EoS is implemented into a three-dimensional phase field (PF) model which can be used for studying inhomogeneous gas-liquid systems in a more general way. The results are compared with the results from molecular dynamics simulations for the LJTS fluid that are carried out in the present work and good agreement is observed. The PF model can therefore be used to overcome the scale limit of molecular simulations. A finite element approach is applied for the implementation of the PF model. This requires the first and second derivatives of the PeTS EoS which are calculated using hyper-dual numbers. Several tests and examples of applications of the new PeTS PF model are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5035495DOI Listing

Publication Analysis

Top Keywords

three-dimensional phase
8
phase field
8
inhomogeneous gas-liquid
8
gas-liquid systems
8
equation state
8
truncated shifted
8
ljts fluid
8
pets eos
8
field modeling
4
modeling inhomogeneous
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!